浏览全部资源
扫码关注微信
华南理工大学材料科学与工程学院 发光材料与器件国家重点实验室, 广东 广州 510641
[ "李梦珂(1995-),女,河 南 商 丘 人,博士,2022 年于华南理工大学获得博士学 位,主 要 从 事 有 机 电 致 发 光 材 料 与器件的研究。Email: limk@scut.edu.cn" ]
[ "苏 仕 健(1971-),男,四 川 彭 州 人,博士,教授,博士生导师,2002 年于日本国 立 山 形 大 学 获 得 博 士 学 位,主 要 从事有机电致发光材料与器件的研究。Email: mssjsu@scut.edu.cn" ]
纸质出版日期:2023-01-05,
收稿日期:2022-08-18,
修回日期:2022-09-02,
扫 描 看 全 文
李梦珂,陈子健,邱伟栋等.纯有机电致室温磷光材料与器件研究进展[J].发光学报,2023,44(01):90-100.
LI Mengke,CHEN Zijian,QIU Weidong,et al.Progress of Purely Organic Room-temperature Electrophosphorescent Materials and Devices[J].Chinese Journal of Luminescence,2023,44(01):90-100.
李梦珂,陈子健,邱伟栋等.纯有机电致室温磷光材料与器件研究进展[J].发光学报,2023,44(01):90-100. DOI: 10.37188/CJL.20220300.
LI Mengke,CHEN Zijian,QIU Weidong,et al.Progress of Purely Organic Room-temperature Electrophosphorescent Materials and Devices[J].Chinese Journal of Luminescence,2023,44(01):90-100. DOI: 10.37188/CJL.20220300.
纯有机室温磷光(RTP)材料由于能够直接利用电致激发产生的75%的三线态激子,近年来在有机电致发光领域受到研究人员的广泛关注。然而,由于纯有机材料理论上的自旋禁阻特性,使得三线态激子的辐射速率慢、激子寿命长,从而难以与非辐射耗散竞争。因此,通过有效的分子设计策略实现增强的自旋⁃轨道耦合,从而促进快速的系间窜越和磷光辐射过程,进而实现高磷光量子效率并抑制长三线态激子寿命导致的各种非辐射失活,对于开发高效的纯有机电致RTP材料与器件至关重要。本文从RTP的分子结构设计出发对近年来的纯有机电致室温磷光材料和器件进行综述,总结了含有不同重原子的纯有机磷光材料的电致发光性能,指出目前研究中需要解决的关键问题,并对其在电致发光领域的应用前景进行了展望。
Purely organic room-temperature phosphorescence (RTP) materials have received extensive attention in the field of organic electroluminescence in recent years for the direct utilization of the 75% triplet excitons generated by electro-excitation. However, due to the theoretical spin-forbidden properties of purely organic materials, triplet excitons generally possess slow radiation rates and long exciton lifetimes, making it prone to non-radiative dissipation. Therefore, achieving enhanced spin-orbit coupling through efficient molecular design strategies is essential to promote fast intersystem crossing and phosphorescence radiation processes, thereby achieving high phosphorescence quantum efficiency and suppressing non-radiative deactivation of long-lived triplet excitons. In this article, based on the structural design principles of RTP materials, we reviewed recent progresses of purely organic RTP electroluminescence materials and devices, and summarized the application of RTP materials containing different non-metallic heavy atoms in electroluminescent devices. Also, we pointed out the key problems that need to be solved in the current research, and prospected the potential application of purely organic RTP materials in the field of electroluminescence.
纯有机室温磷光三线态激子电致发光有机发光二极管
purely organic room-temperature phosphorescence materialtriplet excitonelectroluminescenceorganic light-emitting diode
MA Y G, ZHANG H Y, SHEN J C, et al. Electroluminescence from triplet metal-ligand charge-transfer excited state of transition metal complexes [J]. Synth. Met., 1998, 94(3): 245-248. doi: 10.1016/s0379-6779(97)04166-0http://dx.doi.org/10.1016/s0379-6779(97)04166-0
BALDO M A, O'BRIEN D F, YOU Y, et al. Highly efficient phosphorescent emission from organic electroluminescent devices [J]. Nature, 1998, 395(6698): 151-154. doi: 10.1038/25954http://dx.doi.org/10.1038/25954
孙静, 马会利, 安众福, 等. 高分子长余辉发光材料研究进展 [J]. 发光学报, 2020, 41(12): 1490-1503. doi: 10.37188/CJL.20200317http://dx.doi.org/10.37188/CJL.20200317
SUN J, MA H L, AN Z F, et al. Recent development of polymers with long-lived persistent luminescence [J]. Chin. J. Lumin., 2020, 41(12): 1490-1503. (in Chinese). doi: 10.37188/CJL.20200317http://dx.doi.org/10.37188/CJL.20200317
李振, 李倩倩. 分子聚集态发光展望: 聚散不同性相远集体效应叹观止 [J]. 发光学报, 2020, 41(6): 651-654.
LI Z, LI Q Q. Prospect of luminogens as aggregates: collective effect of molecular aggregation [J]. Chin. J. Lumin., 2020, 41(6): 651-654. (in Chinese)
LI W L, HUANG Q Y, MAO Z, et al. Selective expression of chromophores in a single molecule: soft organic crystals exhibiting full-colour tunability and dynamic triplet-exciton behaviours [J]. Angew. Chem. Int. Ed., 2020, 59(9): 3739-3745. doi: 10.1002/anie.201915556http://dx.doi.org/10.1002/anie.201915556
LIAO Q Y, GAO Q H, WANG J Q, et al. 9, 9-dimethylxanthene derivatives with room-temperature phosphorescence: substituent effects and emissive properties [J]. Angew. Chem. Int. Ed., 2020, 59(25): 9946-9951. doi: 10.1002/anie.201916057http://dx.doi.org/10.1002/anie.201916057
WANG X, MA H L, GU M X, et al. Multicolor ultralong organic phosphorescence through alkyl engineering for 4D coding applications [J]. Chem. Mater., 2019, 31(15): 5584-5591. doi: 10.1021/acs.chemmater.9b01304http://dx.doi.org/10.1021/acs.chemmater.9b01304
WANG Y S, YANG J, FANG M M, et al. Förster resonance energy transfer: an efficient way to develop stimulus-responsive room-temperature phosphorescence materials and their applications [J]. Matter, 2020, 3(2): 449-463. doi: 10.1016/j.matt.2020.05.005http://dx.doi.org/10.1016/j.matt.2020.05.005
BIAN L F, SHI H F, WANG X, et al. Simultaneously enhancing efficiency and lifetime of ultralong organic phosphorescence materials by molecular self-assembly [J]. J. Am. Chem. Soc., 2018, 140(34): 10734-10739. doi: 10.1021/jacs.8b03867http://dx.doi.org/10.1021/jacs.8b03867
WANG J, HUANG Z Z, MA X, et al. Visible-light-excited room-temperature phosphorescence in water by cucurbit[8]uril-mediated supramolecular assembly [J]. Angew. Chem. Int. Ed., 2020, 59(25): 9928-9933. doi: 10.1002/anie.201914513http://dx.doi.org/10.1002/anie.201914513
CAI S Z, MA H L, SHI H F, et al. Enabling long-lived organic room temperature phosphorescence in polymers by subunit interlocking [J]. Nat. Commun., 2019, 10(1): 4247-1-8. doi: 10.1038/s41467-019-11749-xhttp://dx.doi.org/10.1038/s41467-019-11749-x
GU L, WU H W, MA H L, et al. Color-tunable ultralong organic room temperature phosphorescence from a multicomponent copolymer [J]. Nat. Commun., 2020, 11(1): 944-1-8. doi: 10.1038/s41467-020-14792-1http://dx.doi.org/10.1038/s41467-020-14792-1
HIRATA S. Recent advances in materials with room-temperature phosphorescence: photophysics for triplet exciton stabilization [J]. Adv. Opt. Mater., 2017, 5(17): 1700116. doi: 10.1002/adom.201700116http://dx.doi.org/10.1002/adom.201700116
HIRATA S, TOTANI K, ZHANG J X, et al. Efficient persistent room temperature phosphorescence in organic amorphous materials under ambient conditions [J]. Adv. Funct. Mater., 2013, 23(27): 3386-3397. doi: 10.1002/adfm.201203706http://dx.doi.org/10.1002/adfm.201203706
LI M K, CAI X Y, CHEN Z J, et al. Boosting purely organic room-temperature phosphorescence performance through a host-guest strategy [J]. Chem. Sci., 2021, 12(40): 13580-13587. doi: 10.1039/d1sc03420khttp://dx.doi.org/10.1039/d1sc03420k
郑贤, 杨朝龙. 纯有机室温磷光材料研究现状与策略 [J]. 发光学报, 2022, 43(7): 1027-1039. doi: 10.37188/cjl.20220151http://dx.doi.org/10.37188/cjl.20220151
ZHENG X, YANG C L. Research status and strategy of pure organic room temperature phosphorescent materials [J]. Chin. J. Lumin., 2022, 43(7): 1027-1039. (in Chinese). doi: 10.37188/cjl.20220151http://dx.doi.org/10.37188/cjl.20220151
ROBINSON G W, FROSCH R P. Electronic excitation transfer and relaxation [J]. J. Chem. Phys., 1963, 38(5): 1187-1203. doi: 10.1063/1.1733823http://dx.doi.org/10.1063/1.1733823
LOWER S K, EL-SAYED M A. The triplet state and molecular electronic processes in organic molecules [J]. Chem. Rev., 1966, 66(2): 199-241. doi: 10.1021/cr60240a004http://dx.doi.org/10.1021/cr60240a004
QIU W D, CAI X Y, LI M K, et al. Dynamic adjustment of emission from both singlets and triplets: the role of excited state conformation relaxation and charge transfer in phenothiazine derivates [J]. J. Mater. Chem. C, 2021, 9(4): 1378-1386. doi: 10.1039/d0tc05343khttp://dx.doi.org/10.1039/d0tc05343k
WANG S, CHENG Z, HAN X, et al. Efficient and tunable purely organic room temperature phosphorescence films from selenium-containing emitters achieved by structural isomerism [J]. J. Mater. Chem. C, 2022, 10(13): 5141-5146. doi: 10.1039/d2tc00337fhttp://dx.doi.org/10.1039/d2tc00337f
TIAN S, MA H L, WANG X, et al. Utilizing d-pπ bonds for ultralong organic phosphorescence [J]. Angew. Chem. Int. Ed., 2019, 58(20): 6645-6649. doi: 10.1002/anie.201901546http://dx.doi.org/10.1002/anie.201901546
CAI X Y, QIAO Z Y, LI M K, et al. Purely organic crystals exhibit bright thermally activated delayed fluorescence [J]. Angew. Chem. Int. Ed., 2019, 58(38): 13522-13531. doi: 10.1002/anie.201906371http://dx.doi.org/10.1002/anie.201906371
LI M K, CAI X Y, QIAO Z Y, et al. Achieving high-efficiency purely organic room-temperature phosphorescence materials by boronic ester substitution of phenoxathiine [J]. Chem. Commun., 2019, 55(50): 7215-7218. doi: 10.1039/c9cc02648ghttp://dx.doi.org/10.1039/c9cc02648g
SHAO W H, JIANG H J, ANSARI R, et al. Heavy atom oriented orbital angular momentum manipulation in metal-free organic phosphors [J]. Chem. Sci., 2022, 13(3): 789-797. doi: 10.1039/d1sc05689ahttp://dx.doi.org/10.1039/d1sc05689a
LIU H C, GAO Y, CAO J G, et al. Efficient room-temperature phosphorescence based on a pure organic sulfur-containing heterocycle: folding-induced spin-orbit coupling enhancement [J]. Mater. Chem. Front., 2018, 2(10): 1853-1858. doi: 10.1039/c8qm00320chttp://dx.doi.org/10.1039/c8qm00320c
CHEN D G, CHEN Y, WU C H, et al. Phenothiazine scope: steric strain induced planarization and excimer formation [J]. Angew. Chem. Int. Ed., 2019, 58(38): 13297-13301. doi: 10.1002/anie.201906083http://dx.doi.org/10.1002/anie.201906083
CHAUDHURI D, SIGMUND E, MEYER A, et al. Metal-free OLED triplet emitters by side-stepping kasha's rule [J]. Angew. Chem. Int. Ed., 2013, 52(50): 13449-13452. doi: 10.1002/anie.201307601http://dx.doi.org/10.1002/anie.201307601
RATZKE W, SCHMITT L, MATSUOKA H, et al. Effect of conjugation pathway in metal-free room-temperature dual singlet-triplet emitters for organic light-emitting diodes [J]. J. Phys. Chem. Lett., 2016, 7(22): 4802-4808. doi: 10.1021/acs.jpclett.6b01907http://dx.doi.org/10.1021/acs.jpclett.6b01907
BERGAMINI G, FERMI A, BOTTA C, et al. A persulfurated benzene molecule exhibits outstanding phosphorescence in rigid environments: from computational study to organic nanocrystals and OLED applications [J]. J. Mater. Chem. C, 2013, 1(15): 2717-2724. doi: 10.1039/c3tc00878ahttp://dx.doi.org/10.1039/c3tc00878a
CHEN C J, HUANG R J, BATSANOV A S, et al. Intramolecular charge transfer controls switching between room temperature phosphorescence and thermally activated delayed fluorescence [J]. Angew. Chem. Int. Ed., 2018, 57(50): 16407-16411. doi: 10.1002/anie.201809945http://dx.doi.org/10.1002/anie.201809945
SHU H Y, CHEN L, WU X F, et al. Persistent room temperature phosphorescence films based on star-shaped organic emitters [J]. J. Mater. Chem. C, 2022, 10(5): 1833-1838. doi: 10.1039/d1tc05367ahttp://dx.doi.org/10.1039/d1tc05367a
WANG J X, LIANG J X, XU Y C, et al. Purely organic phosphorescence emitter-based efficient electroluminescence devices [J]. J. Phys. Chem. Lett., 2019, 10(19): 5983-5988. doi: 10.1021/acs.jpclett.9b02513http://dx.doi.org/10.1021/acs.jpclett.9b02513
QIU W D, CAI X Y, CHEN Z J, et al. A "flexible" purely organic molecule exhibiting strong spin-orbital coupling: toward nondoped room-temperature phosphorescence OLEDs [J]. J. Phys. Chem. Lett., 2022, 13(22): 4971-4980. doi: 10.1021/acs.jpclett.2c01205http://dx.doi.org/10.1021/acs.jpclett.2c01205
LI M K, XIE W T, CAI X Y, et al. Molecular engineering of sulfur-bridged polycyclic emitters towards tunable TADF and RTP electroluminescence [J]. Angew. Chem. Int. Ed., 2022, 61(35): e202209343. doi: 10.1002/anie.202209343http://dx.doi.org/10.1002/anie.202209343
DE SA PEREIRA D, LEE D R, KUKHTA N A, et al. The effect of a heavy atom on the radiative pathways of an emitter with dual conformation, thermally-activated delayed fluorescence and room temperature phosphorescence [J]. J. Mater. Chem. C, 2019, 7(34): 10481-10490. doi: 10.1039/c9tc02477hhttp://dx.doi.org/10.1039/c9tc02477h
LEE D R, LEE K H, SHAO W H, et al. Heavy atom effect of selenium for metal-free phosphorescent light-emitting diodes [J]. Chem. Mater., 2020, 32(6): 2583-2592. doi: 10.1021/acs.chemmater.0c00078http://dx.doi.org/10.1021/acs.chemmater.0c00078
KIM C L, JEONG J, JANG H J, et al. Purely organic phosphorescent organic light emitting diodes using alkyl modified phenoselenazine [J]. J. Mater. Chem. C, 2021, 9(26): 8233-8238. doi: 10.1039/d1tc01741ahttp://dx.doi.org/10.1039/d1tc01741a
KIM C L, KIM J M, JANG H, et al. Chromophore and spin-orbit coupling engineering for highly efficient purely organic phosphorescent emitters [J]. ACS Appl. Energy Mater., 2022, 5(4): 4985-4990. doi: 10.1021/acsaem.2c00356http://dx.doi.org/10.1021/acsaem.2c00356
JANG H J, KIM C L, LEE J Y. Purely organic phosphor sensitization for efficiency improvement in yellow fluorescent organic light-emitting diodes [J]. Mater. Chem. Front., 2022, 6(14): 1982-1988. doi: 10.1039/d2qm00282ehttp://dx.doi.org/10.1039/d2qm00282e
KIM C L, JEONG J, LEE D R, et al. Dual mode radiative transition from a phenoselenazine derivative and electrical switching of the emission mechanism [J]. J. Phys. Chem. Lett., 2020, 11(14): 5591-5600. doi: 10.1021/acs.jpclett.0c01580http://dx.doi.org/10.1021/acs.jpclett.0c01580
JANG H J, KIM C L, LEE J Y. Exciton harvesting of dual-emitting room temperature organic phosphors using a thermally activated delayed fluorescence sensitizer [J]. Org. Electron., 2022, 108: 106581. doi: 10.1016/j.orgel.2022.106581http://dx.doi.org/10.1016/j.orgel.2022.106581
GATO S, NITTA Y, DECARLI N O, et al. Revealing the internal heavy chalcogen atom effect on the photophysics of the dibenzo[a, j]phenazine-cored donor-acceptor-donor triad [J]. J. Mater. Chem. C, 2021, 9(39): 13942-13953. doi: 10.1039/d1tc02635fhttp://dx.doi.org/10.1039/d1tc02635f
CHEN H, DENG Y H, ZHU X Y, et al. Toward achieving single-molecule white electroluminescence from dual emission of fluorescence and phosphorescence [J]. Chem. Mater., 2020, 32(9): 4038-4044. doi: 10.1021/acs.chemmater.0c00710http://dx.doi.org/10.1021/acs.chemmater.0c00710
HAN X C, WANG X, WU Y L, et al. Modulation of triplet-mediated emission from selenoxanthen-9-one-based D-A-D type emitters through tuning the twist angle to realize electroluminescence efficiency over 25% [J]. J. Mater. Chem. C, 2022, 10(19): 7437-7442. doi: 10.1039/d2tc00899hhttp://dx.doi.org/10.1039/d2tc00899h
YIN Z, GU M X, MA H L, et al. Molecular engineering through control of structural deformation for highly efficient ultralong organic phosphorescence [J]. Angew. Chem. Int. Ed., 2021, 60(4): 2058-2063. doi: 10.1002/anie.202011830http://dx.doi.org/10.1002/anie.202011830
ANZENBACHER P JR, PÉREZ-BOLÍVAR C, TAKIZAWA S Y, et al. Room-temperature electrophosphorescence from an all-organic material [J]. J. Lumin., 2016, 180: 111-116. doi: 10.1016/j.jlumin.2016.08.020http://dx.doi.org/10.1016/j.jlumin.2016.08.020
HE Y, CHENG N H, XU X, et al. A high efficiency pure organic room temperature phosphorescence polymer PPV derivative for OLED [J]. Org. Electron., 2019, 64: 247-251. doi: 10.1016/j.orgel.2018.10.012http://dx.doi.org/10.1016/j.orgel.2018.10.012
LEE D R, HAN S H, LEE J Y. Metal-free and purely organic phosphorescent light-emitting diodes using phosphorescence harvesting hosts and organic phosphorescent emitters [J]. J. Mater. Chem. C, 2019, 7(37): 11500-11506. doi: 10.1039/c9tc03203ghttp://dx.doi.org/10.1039/c9tc03203g
SONG B, SHAO W H, JUNG J, et al. Organic light-emitting diode employing metal-free organic phosphor [J]. ACS Appl. Mater. Interfaces, 2020, 12(5): 6137-6143. doi: 10.1021/acsami.9b20181http://dx.doi.org/10.1021/acsami.9b20181
WU X G, HUANG C Y, CHEN D G, et al. Exploiting racemism enhanced organic room-temperature phosphorescence to demonstrate Wallach's rule in the lighting chiral chromophores [J]. Nat. Commun., 2020, 11(1): 2145-1-10. doi: 10.1038/s41467-020-15976-5http://dx.doi.org/10.1038/s41467-020-15976-5
WANG T, SU X G, ZHANG X P, et al. Aggregation-induced dual-phosphorescence from organic molecules for nondoped light-emitting diodes [J]. Adv. Mater., 2019, 31(51): 1904273-1-7. doi: 10.1002/adma.201904273http://dx.doi.org/10.1002/adma.201904273
SUN J, JIA J S, ZHAO B, et al. A purely organic D-π-A-π-D emitter with thermally activated delayed fluorescence and room temperature phosphorescence for near-white OLED [J]. Chin. Chem. Lett., 2021, 32(4): 1367-1371. doi: 10.1016/j.cclet.2020.09.060http://dx.doi.org/10.1016/j.cclet.2020.09.060
LIU X R, YANG L Q, LI X F, et al. An electroactive pure organic room-temperature phosphorescence polymer based on a donor-oxygen-acceptor geometry [J]. Angew. Chem. Int. Ed., 2021, 60(5): 2455-2463. doi: 10.1002/anie.202011957http://dx.doi.org/10.1002/anie.202011957
0
浏览量
351
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构