浏览全部资源
扫码关注微信
1.广西科技大学 生物与化学工程学院, 广西糖资源绿色加工重点实验室, 广西 柳州 545006
2.蔗糖产业省部共建协同创新中心, 广西 南宁 530004
[ "崔美佳(1998-),女,黑龙江哈尔滨人,硕士研究生,2020年于齐齐哈尔大学获得学士学位,主要从事纳米材料的研究。E-mail:1870574051@qq.com" ]
[ "黄文艺(1975-),男,广西南宁人,博士,高级实验师,2009年于南京大学获得博士学位,主要从事纳米材料方面的研究。E-mail:hwylz18@163.com" ]
纸质出版日期:2023-02-05,
收稿日期:2022-08-22,
修回日期:2022-09-12,
移动端阅览
崔美佳,黄秋梅,黄文艺等.水溶性Sm∶ZnO⁃NH2量子点荧光探针制备及其用于选择性检测多巴胺[J].发光学报,2023,44(02):374-386.
CUI Meijia,HUANG Qiumei,HUANG Wenyi,et al.Preparation of Water-soluble Sm∶ZnO-NH2 QDs Fluorescent Probe and Its Application for Selective Detection of Dopamine[J].Chinese Journal of Luminescence,2023,44(02):374-386.
崔美佳,黄秋梅,黄文艺等.水溶性Sm∶ZnO⁃NH2量子点荧光探针制备及其用于选择性检测多巴胺[J].发光学报,2023,44(02):374-386. DOI: 10.37188/CJL.20220296.
CUI Meijia,HUANG Qiumei,HUANG Wenyi,et al.Preparation of Water-soluble Sm∶ZnO-NH2 QDs Fluorescent Probe and Its Application for Selective Detection of Dopamine[J].Chinese Journal of Luminescence,2023,44(02):374-386. DOI: 10.37188/CJL.20220296.
采用3⁃氨丙基三乙氧基硅烷(APTEs)封端氧化锌量子点(ZnO QDs)的方式,制备了一种荧光性能稳定的水溶性Sm∶ZnO⁃NH
2
QDs荧光探针。通过透射电子显微镜(TEM)、X射线衍射(XRD)、X射线光电子能谱(XPS)、傅里叶变换红外光谱仪(FT⁃IR)、纳米粒度和Zeta电位仪(DLS)、稳瞬态荧光光谱仪(PL)等对材料进行表征。最优化条件下制备的该探针在水中具有良好的荧光性能,在4 ℃下贮存10 d后其荧光强度仍保留92%。基于该探针的荧光可以直接被多巴胺(DA)选择性猝灭,建立了一种选择性检测DA含量的荧光分析新方法,在50~1 600 ng/mL浓度内,该探针呈现良好的线性关系(
y
=0.4639
x
+ 0.008530,
R
2
=0.996 3),检出限(LOD)为1.08 ng/mL,具有较好的稳定性和重现性,并成功应用于人体尿液样品的检测,回收率为98.18%~107.84%。
In this paper, a water-soluble Sm∶ZnO-NH
2
QDs fluorescent probe with stable fluorescence performance was prepared by means of 3-aminopropyltriethoxysilane(APTEs) terminated zinc oxide quantum dots(ZnO QDs). Materials were characterized by transmission electron microscopy(TEM), X-ray diffraction(XRD), X-ray photoelectron spectroscopy(XPS), Fourier transform infrared spectrometer(FT-IR), nanoparticles size and Zeta potentiometers(DLS), steady transient fluorescence spectrometer(PL),
etc
. The probe prepared under optimal conditions has good fluorescence performance in water, and its fluorescence intensity remains 92% after 10 d of storage at 4 ℃. Based on the probe fluorescence can be directly quenched by dopamine(DA), a new method for fluorescence analysis for selective detection of DA content was established, and the probe showed a good linear relationship(
y
=0.46393
x
+0.008530,
R
2
=0.996 3) and a detection limit of 1.08 ng/mL within a concentration of 50-1 600 ng/mL, which had good stability and reproducibility. It was successfully applied to the detection of human urine samples, and the recovery rate was 98.18% to 107.84%.
Sm掺杂ZnO-NH2 QDs荧光探针选择性猝灭多巴胺
Sm dopedZnO-NH2 QDsfluorescence probeselective quenchingdopamine
ENSAFI A A, ZAKERY M, REZAEI B. An optical sensor with specific binding sites for the detection of thioridazine hydrochloride based on ZnO-QDs coated with molecularly imprinted polymer [J]. Spectrochim. Acta Part A: Mol. Biomol. Spectrosc., 2019, 206: 460-465. doi: 10.1016/j.saa.2018.08.040http://dx.doi.org/10.1016/j.saa.2018.08.040
ROSHINI A, JAGADEESAN S, ARIVAZHAGAN L, et al. pH-sensitive tangeretin-ZnO quantum dots exert apoptotic and anti-metastatic effects in metastatic lung cancer cell line [J]. Mat. Sci. Eng.: C, 2018, 92: 477-488. doi: 10.1016/j.msec.2018.06.073http://dx.doi.org/10.1016/j.msec.2018.06.073
YE Y F. Photoluminescence property adjustment of ZnO quantum dots synthesized via sol‑gel method [J]. J. Mater. Sci.: Mater. Electron., 2018, 29(6): 4967-4974. doi: 10.1007/s10854-017-8457-2http://dx.doi.org/10.1007/s10854-017-8457-2
BADILLI U, MOLLARASOULI F, BAKIRHAN N K, et al. Role of quantum dots in pharmaceutical and biomedical analysis, and its application in drug delivery [J]. TrAC Trends Anal. Chem., 2020, 131: 116013-1-12. doi: 10.1016/j.trac.2020.116013http://dx.doi.org/10.1016/j.trac.2020.116013
WOLSKA E, KASZEWSKI J, KIEBIK P, et al. Rare earth activated ZnO nanoparticles as biomarkers [J]. Opt. Mater., 2014, 36(10): 1655-1659. doi: 10.1016/j.optmat.2013.12.032http://dx.doi.org/10.1016/j.optmat.2013.12.032
MATSUYAMA K, IHSAN N, IRIE K, et al. Bioimaging application of highly luminescent silica-coated ZnO-nanoparticle quantum dots with biotin [J]. J. Colloid Interface Sci., 2013, 399: 19-25. doi: 10.1016/j.jcis.2013.02.047http://dx.doi.org/10.1016/j.jcis.2013.02.047
张佳楠, 常开文, 李琼, 等. 半导体聚合物纳米荧光探针的制备及生物应用研究进展 [J]. 发光学报, 2015, 36(7): 725-737. doi: 10.3788/fgxb20153607.0725http://dx.doi.org/10.3788/fgxb20153607.0725
ZHANG J N, CHANG K W, LI Q, et al. Preparation, regulation and biological application of fluorescent semiconducting polymer dots [J]. Chin. J. Lumin., 2015, 36(7): 725-737. (in Chinese). doi: 10.3788/fgxb20153607.0725http://dx.doi.org/10.3788/fgxb20153607.0725
LUO C, HOU C Y, ZHANG Q H, et al. A noise-reduced broad-spectrum photodetector based on reagent-free electrophoretic assembled flexible ZnO/rGO films [J]. Appl. Surf. Sci., 2019, 469: 113-117. doi: 10.1016/j.apsusc.2018.11.012http://dx.doi.org/10.1016/j.apsusc.2018.11.012
SUN Y J, YANG H Y, ZHAO Z T, et al. Fabrication of ZnO quantum dots@SnO2 hollow nanospheres hybrid hierarchical structures for effectively detecting formaldehyde [J]. Sens. Actuators B: Chem., 2020, 318: 128222-1-10. doi: 10.1016/j.snb.2020.128222http://dx.doi.org/10.1016/j.snb.2020.128222
JUNG H, CHO W, YOO R, et al. Highly selective real-time detection of breath acetone by using ZnO quantum dots with a miniaturized gas chromatographic column [J]. Sens. Actuators B: Chem., 2018, 274: 527-532. doi: 10.1016/j.snb.2018.07.144http://dx.doi.org/10.1016/j.snb.2018.07.144
LI L, ZHAI T Y, BANDO Y, et al. Recent progress of one-dimensional ZnO nanostructured solar cells [J]. Nano Energy, 2012, 1(1): 91-106. doi: 10.1016/j.nanoen.2011.10.005http://dx.doi.org/10.1016/j.nanoen.2011.10.005
VANHEUSDEN K, WARREN W L, SEAGER C H, et al. Mechanisms behind green photoluminescence in ZnO phosphor powders [J]. J. Appl. Phys., 1996, 79(10): 7983-7990. doi: 10.1063/1.362349http://dx.doi.org/10.1063/1.362349
XIONG H M, SHCHUKIN D G, MÖHWALD H, et al. Sonochemical synthesis of highly luminescent zinc oxide nanoparticles doped with magnesium(II) [J]. Angew. Chem. Int. Ed., 2009, 48(15): 2727-2731. doi: 10.1002/anie.200805590http://dx.doi.org/10.1002/anie.200805590
HUANG W Y, LV X W, TAN J L, et al. Regulable preparation of the oxygen vacancy of ZnO QDs and their fluorescence performance [J]. J. Mol. Struct., 2019, 1195: 653-658. doi: 10.1016/j.molstruc.2019.05.105http://dx.doi.org/10.1016/j.molstruc.2019.05.105
JAGGI N, RATHEE N. Samarium3+-doped CdSe quantum dots for improved electro-optical properties [J]. Mater. Today: Proc., 2019, 16: 201-205. doi: 10.1016/j.matpr.2019.05.246http://dx.doi.org/10.1016/j.matpr.2019.05.246
YANG J H, LI X, LANG J H, et al. Effects of mineralizing agent on the morphologies and photoluminescence properties of Eu3+-doped ZnO nanomaterials [J]. J. Alloys Compd., 2011, 509(41): 10025-10031. doi: 10.1016/j.jallcom.2011.08.021http://dx.doi.org/10.1016/j.jallcom.2011.08.021
LU G, YU G H, KONG X, et al. Porphyrin/MoS2 film for ultrasensitive dopamine detection [J]. Inorg. Chem. Commun., 2019, 110: 107591-1-5. doi: 10.1016/j.inoche.2019.107591http://dx.doi.org/10.1016/j.inoche.2019.107591
BEREZHNOV A V, FEDOTOVA E I, SERGEEV A I, et al. Dopamine controls neuronal spontaneous calcium oscillations via astrocytic signal [J]. Cell Calcium, 2021, 94: 102359. doi: 10.1016/j.ceca.2021.102359http://dx.doi.org/10.1016/j.ceca.2021.102359
IMMANUEL S, APARNA T K, SIVASUBRAMANIAN R. A facile preparation of Au-SiO2 nanocomposite for simultaneous electrochemical detection of dopamine and uric acid [J]. Surf. Interfaces, 2019, 14: 82-91. doi: 10.1016/j.surfin.2018.11.010http://dx.doi.org/10.1016/j.surfin.2018.11.010
WEI X, ZHANG Z D, WANG Z H. A simple dopamine detection method based on fluorescence analysis and dopamine polymerization [J]. Microchem. J., 2019, 145: 55-58. doi: 10.1016/j.microc.2018.10.004http://dx.doi.org/10.1016/j.microc.2018.10.004
KADAM V V, BALAKRISHNAN R M, PONNAN ETTIYAPPAN J, et al. Sensing of p-nitrophenol in aqueous solution using zinc oxide quantum dots coated with APTES [J]. Environ. Nanotechnol., Monit. Manage., 2021, 16: 100474. doi: 10.1016/j.enmm.2021.100474http://dx.doi.org/10.1016/j.enmm.2021.100474
ZHOU T, SU Z, TU Y F, et al. Determination of dopamine based on its enhancement of gold-silver nanocluster fluorescence [J]. Spectrochim. Acta Part A: Mol. Biomol. Spectrosc., 2021, 252: 119519-1-6. doi: 10.1016/j.saa.2021.119519http://dx.doi.org/10.1016/j.saa.2021.119519
HANNAH S, AL-HATMI M, GRAY L, et al. Low-cost, thin-film, mass-manufacturable carbon electrodes for detection of the neurotransmitter dopamine [J]. Bioelectrochemistry, 2020, 133: 107480-1-9. doi: 10.1016/j.bioelechem.2020.107480http://dx.doi.org/10.1016/j.bioelechem.2020.107480
XU B B, SU Y Y, LI L, et al. Thiol-functionalized single-layered MoS2 nanosheet as a photoluminescence sensing platform via charge transfer for dopamine detection [J]. Sens. Actuators B: Chem., 2017, 246: 380-388. doi: 10.1016/j.snb.2017.02.110http://dx.doi.org/10.1016/j.snb.2017.02.110
ZHAO D, SONG H J, HAO L Y, et al. Luminescent ZnO quantum dots for sensitive and selective detection of dopamine [J]. Talanta, 2013, 107: 133-139. doi: 10.1016/j.talanta.2013.01.006http://dx.doi.org/10.1016/j.talanta.2013.01.006
HUANG W Y, BAI D W, LI L J, et al. The synthesis of ultrasmall ZnO@PEG nanoparticles and its fluorescence properties [J]. J. Sol⁃Gel. Sci. Technol., 2015, 74(3): 718-725. doi: 10.1007/s10971-015-3653-0http://dx.doi.org/10.1007/s10971-015-3653-0
黄秋梅, 吕晓威, 谭嘉麟, 等. Sm掺杂ZnO QDs的制备及其荧光性能研究 [J]. 无机盐工业, 2020, 52(8): 30-35. doi: 10.11962/1006-4990.2019-0498http://dx.doi.org/10.11962/1006-4990.2019-0498
HUANG Q M, LÜ X W, TAN J L, et al. Preparation of Sm doped ZnO QDs and its fluorescence performance [J]. Inorg. Chem. Ind., 2020, 52(8): 30-35. (in Chinese). doi: 10.11962/1006-4990.2019-0498http://dx.doi.org/10.11962/1006-4990.2019-0498
CAGLAR Y, CAGLAR M, ILICAN S. XRD, SEM, XPS studies of Sb doped ZnO films and electrical properties of its based Schottky diodes [J]. Optik, 2018, 164: 424-432. doi: 10.1016/j.ijleo.2018.03.017http://dx.doi.org/10.1016/j.ijleo.2018.03.017
WANG D D, XING G Z, YANG J H, et al. Dependence of energy transfer and photoluminescence on tailored defects in Eu-doped ZnO nanosheets-based microflowers [J]. J. Alloys Compd., 2010, 504(1): 22-26. doi: 10.1016/j.jallcom.2010.05.105http://dx.doi.org/10.1016/j.jallcom.2010.05.105
THOOL G S, ARUNAKUMARI M, SINGH A K, et al. Shape tunable synthesis of Eu- and Sm- doped ZnO microstructures: a morphological evaluation [J]. Bull. Mater. Sci., 2015, 38(6): 1519-1525. doi: 10.1007/s12034-015-0967-zhttp://dx.doi.org/10.1007/s12034-015-0967-z
AHMED M A M, MWANKEMWA B S, CARLESCHI E, et al. Effect of Sm doping ZnO nanorods on structural optical and electrical properties of Schottky diodes prepared by chemical bath deposition [J]. Mater. Sci. Semicond. Process., 2018, 79: 53-60. doi: 10.1016/j.mssp.2018.02.003http://dx.doi.org/10.1016/j.mssp.2018.02.003
HAN N, WU X F, CHAI L Y, et al. Counterintuitive sensing mechanism of ZnO nanoparticle based gas sensors [J]. Sens. Actuators B: Chem., 2010, 150(1): 230-238. doi: 10.1016/j.snb.2010.07.009http://dx.doi.org/10.1016/j.snb.2010.07.009
AHMED M A, COETSEE L, MEYER W E, et al. Influence (Ce and Sm) co-doping ZnO nanorods on the structural, optical and electrical properties of the fabricated Schottky diode using chemical bath deposition [J]. J. Alloys Compd., 2019, 810: 151929-1-10. doi: 10.1016/j.jallcom.2019.151929http://dx.doi.org/10.1016/j.jallcom.2019.151929
崔葆, 黄秋梅, 戎西林, 等. 开关式氧化锌量子点荧光探针制备及其特异性检测Cu2+应用 [J]. 发光学报, 2022, 43(4): 620-632. doi: 10.37188/cjl.20210408http://dx.doi.org/10.37188/cjl.20210408
CUI B, HUANG Q M, RONG X L, et al. Preparation of switchable ZnO-NH2 QDs fluorescent probe and its application in specific detection of Cu2+ [J]. Chin. J. Lumin., 2022, 43(4): 620-632. (in Chinese). doi: 10.37188/cjl.20210408http://dx.doi.org/10.37188/cjl.20210408
SINGH J, SINGH R C. Enhancement of optical, dielectric and transport properties of (Sm, V) co-doped ZnO system and structure-property correlations [J]. Ceram. Int., 2021, 47(8): 10611-10627. doi: 10.1016/j.ceramint.2020.12.174http://dx.doi.org/10.1016/j.ceramint.2020.12.174
ZOU T, XING X X, YANG Y, et al. Water-soluble ZnO quantum dots modified by (3-aminopropyl)triethoxysilane: the promising fluorescent probe for the selective detection of Cu2+ ion in drinking water [J]. J. Alloys Compd., 2020, 825: 153904-1-11. doi: 10.1016/j.jallcom.2020.153904http://dx.doi.org/10.1016/j.jallcom.2020.153904
SUN L W, SHI H Q, LI W N, et al. Lanthanum-doped ZnO quantum dots with greatly enhanced fluorescent quantum yield [J]. J. Mater. Chem., 2012, 22(17): 8221-8227. doi: 10.1039/c2jm00040ghttp://dx.doi.org/10.1039/c2jm00040g
TALLURI B, PRASAD E, THOMAS T. Impact of solvent on the formation and optical properties of digestively ripened, ultra-small (r<2 nm) copper oxide quantum dots [J]. J. Mol. Liq., 2018, 265: 771-778. doi: 10.1016/j.molliq.2018.05.069http://dx.doi.org/10.1016/j.molliq.2018.05.069
GHIMIRE S, BIJU V. Relations of exciton dynamics in quantum dots to photoluminescence, lasing, and energy harvesting [J]. J. Photochem. Photobiol. C: Photochem. Rev., 2018, 34: 137-151. doi: 10.1016/j.jphotochemrev.2018.01.004http://dx.doi.org/10.1016/j.jphotochemrev.2018.01.004
HARANATH D, SAHAI S, JOSHI A G, et al. Investigation of confinement effects in ZnO quantum dots [J]. Nanotechnology, 2009, 20(42): 425701-1-7. doi: 10.1088/0957-4484/20/42/425701http://dx.doi.org/10.1088/0957-4484/20/42/425701
MOGHADDAM E, YOUZBASHI A A, KAZEMZADEH A, et al. Photoluminescence investigation of ZnO quantum dots surface modified with silane coupling agent as a capping agent [J]. J. Lumin., 2015, 168: 158-162. doi: 10.1016/j.jlumin.2015.08.008http://dx.doi.org/10.1016/j.jlumin.2015.08.008
WANG Z Y, WANG X Y, ZHU X S, et al. Fabrication of non-destructive and enhanced electrochemiluminescence interface for reusable detection of cell-released dopamine [J]. Sens. Actuators B: Chem., 2019, 285: 438-444. doi: 10.1016/j.snb.2019.01.087http://dx.doi.org/10.1016/j.snb.2019.01.087
SHERVEDANI R K, AMINI A. Direct electrochemistry of dopamine on gold—Agaricus bisporus laccase enzyme electrode: characterization and quantitative detection [J]. Bioelectrochemistry, 2012, 84: 25-31. doi: 10.1016/j.bioelechem.2011.10.004http://dx.doi.org/10.1016/j.bioelechem.2011.10.004
SCHÖNING M J, JACOBS M, MUCK A, et al. Amperometric PDMS/glass capillary electrophoresis-based biosensor microchip for catechol and dopamine detection [J]. Sens. Actuators B: Chem., 2005, 108(1-2): 688-694. doi: 10.1016/j.snb.2004.11.032http://dx.doi.org/10.1016/j.snb.2004.11.032
QIN X, YUAN C L, SHI R, et al. Colorimetric detection of dopamine based on iodine-mediated etching of gold nanorods [J]. Chin. J. Anal. Chem., 2021, 49(1): 60-67. doi: 10.1016/s1872-2040(20)60073-1http://dx.doi.org/10.1016/s1872-2040(20)60073-1
LI F, GAO J, LI Y J, et al. Selective and sensitive determination of celastrol in traditional Chinese medicine based on molecularly imprinted polymers modified Mn-doped ZnS quantum dots optosensing materials [J]. Colloids Surf. B: Biointerfaces, 2020, 190: 110929-1-9. doi: 10.1016/j.colsurfb.2020.110929http://dx.doi.org/10.1016/j.colsurfb.2020.110929
HAGHANI S K, ENSAFI A A, KAZEMIFARD N, et al. Development of a selective and sensitive chlorogenic acid fluorimetric sensor using molecularly imprinted polymer ZnO quantum dots [J]. IEEE Sens. J., 2020, 20(11): 5691-5697. doi: 10.1109/jsen.2020.2972040http://dx.doi.org/10.1109/jsen.2020.2972040
HE K, SHEN C, ZHU Y Q, et al. Stable luminescent CsPbI3 quantum dots passivated by (3-Aminopropyl)triethoxysilane [J]. Langmuir, 2020, 36(34): 10210-10217. doi: 10.1021/acs.langmuir.0c01688http://dx.doi.org/10.1021/acs.langmuir.0c01688
0
浏览量
232
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构