浏览全部资源
扫码关注微信
1.太原理工大学 新材料界面科学与工程教育部重点实验室, 山西 太原 030024
2.太原理工大学 材料科学与工程学院,山西 太原 030024
3.山西浙大新材料与化工研究院, 山西 太原 030032
4.陕西科技大学 材料原子⁃分子科学研究所, 陕西 西安 710021
[ "刘佳男(1996-),男,山西霍州人,硕士研究生,2014年于北京化工大学获得学士学位,主要从事纳米碳光电材料的研究。 E-mail: ljn825306631@126.com" ]
[ "杨永珍(1969-),女,山西翼城人,博士,教授,博士生导师,2007年于太原理工大学获得博士学位,主要从事纳米碳功能材料、碳基光电材料和生物医药材料的研究。 E-mail: yyztyut@126.com" ]
[ "许并社(1955-),男,山西翼城人,博士,教授,博士生导师,1994年于日本东京大学获得博士学位,主要从事化合物半导体材料及器件的研究。 E-mail: xubs@tyut.edu.cn" ]
纸质出版日期:2022-12-05,
收稿日期:2022-08-21,
修回日期:2022-09-12,
扫 描 看 全 文
刘佳男,王芷,闫翎鹏等.光学增益介质在微型激光器中的应用进展[J].发光学报,2022,43(12):1948-1964.
LIU Jia-nan,WANG Zhi,YAN Ling-peng,et al.Application Advances of Optical Gain Media in Microlasers[J].Chinese Journal of Luminescence,2022,43(12):1948-1964.
刘佳男,王芷,闫翎鹏等.光学增益介质在微型激光器中的应用进展[J].发光学报,2022,43(12):1948-1964. DOI: 10.37188/CJL.20220280.
LIU Jia-nan,WANG Zhi,YAN Ling-peng,et al.Application Advances of Optical Gain Media in Microlasers[J].Chinese Journal of Luminescence,2022,43(12):1948-1964. DOI: 10.37188/CJL.20220280.
微型激光器具有体型小、光束质量高、激光亮度强和响应速度快等优点,在军事、医疗和通信等领域展现出极大的应用潜力。增益介质作为微型激光器的核心部分,是一类具有放大自发辐射特性的材料。其本身的放大自发辐射特性对激光器性能起着至关重要的作用,直接影响微型激光器的阈值、激光能量、稳定性和波长调谐性等性能。近年来,各种新型具有放大自发辐射性能的材料被相继开发,并在各类微型激光器中崭露头角。本文首先介绍激光器中增益介质的放大自发辐射工作原理;然后系统综述微型激光器用各类光学增益介质的特性及不同模式谐振腔产生激光的研究现状,指出目前这些材料所存在的问题,并提出解决策略;最后对其未来发展进行展望,以期对微型激光器的研发有所裨益。
With the advantages of small size, high beam quality, strong laser brightness and fast response speed, microlasers show great application potential in military, medical, communication and other fields. As a core part of microlaser, the gain medium is a kind of material with amplified spontaneous emission ability, which plays an important role in laser properties and directly affects the threshold, laser energy, stability and wavelength tuning performance of microlaser. In recent years, various advanced materials with amplifying spontaneous emission property have been developed, and they have emerged in various microlasers. In this review, the working principle of the amplified spontaneous emission for the gain medium in the laser was firstly introduced. Secondly, the characteristics of optical gain media for microlasers and the research status of laser from different modes of optical resonators were systematically summarized. Finally, the current problems and solutions of amplified spontaneous emission materials were put forward, and the future development was prospected. This review will be beneficial to the research and development of microlasers.
微型激光器放大自发辐射增益介质谐振腔
microlasersamplified spontaneous emissiongain mediumoptical resonator
ZINTH W, LAUBEREAU A, KAISER W. The long journey to the laser and its rapid development after 1960 [J]. Eur. Phys. J. H, 2011, 36(2): 153-181.
CHO C, PALATNIK A, SUDZIUS M, et al. Controlling and optimizing amplified spontaneous emission in perovskites [J]. ACS Appl. Mater. Interfaces, 2020, 12(31): 35242-35249. doi: 10.1021/acsami.0c08870http://dx.doi.org/10.1021/acsami.0c08870
JIA Y F, KERNER R A, GREDE A J, et al. Continuous-wave lasing in an organic-inorganic lead halide perovskite semiconductor [J]. Nat. Photonics, 2017, 11(12): 784-788. doi: 10.1038/s41566-017-0047-6http://dx.doi.org/10.1038/s41566-017-0047-6
HIDE F, SCHWARTZ B J, DÍAZ-GARCÍA M A, et al. Laser emission from solutions and films containing semiconducting polymer and titanium dioxide nanocrystals [J]. Chem. Phys. Lett., 1996, 256(4-5): 424-430.
HIDE F, DÍAZ-GARCÍA M A, SCHWARTZ B J, et al. Semiconducting polymers: a new class of solid-state laser materials [J]. Science, 1996, 273(5283): 1833-1836.
WU H, LIU H Y, WANG W Z, et al. Tailoring the efficiency and spectrum of a green random laser generated by frequency doubling of random fiber lasers [J]. Opt. Express, 2021, 29(14): 21521-21529. doi: 10.1364/OE.430578http://dx.doi.org/10.1364/OE.430578
GUAN S J, ZHANG Y S, YUAN B C, et al. Research on the asymmetric corrugation-pitch-modulated HR-AR DFB lasers with sampled gratings [J]. J. Lightw. Technol., 2021, 39(14): 4725-4736. doi: 10.1109/JLT.2021.3075484http://dx.doi.org/10.1109/JLT.2021.3075484
TRAVEN V F, CHEPTSOV D A, DOLOTOV S M, et al. Control of the fluorescence of laser dyes by photooxidation of dihydrohetarenes [J]. Dyes Pigm., 2018, 158: 104-113.
JUNG H, AHN N, KLIMOV V I. Prospects and challenges of colloidal quantum dot laser diodes [J]. Nat. Photonics, 2021, 15(9): 643-655.
DONG H Y, ZHANG C H, LIU X L, et al. Materials chemistry and engineering in metal halide perovskite lasers [J]. Chem. Soc. Rev., 2020, 49(3): 951-982.
ZHANG W, YAO J N, ZHAO Y S. Organic micro/nanoscale lasers [J]. Acc. Chem. Res., 2016, 49(9): 1691-1700.
DONG H Y, ZHANG C H, ZHAO Y S. Controlling the output of organic micro/nanolasers [J]. Adv. Opt. Mater., 2019, 7(17): 1900037-1-12.
ZHANG W F, NI Y Q, XU X H, et al. Realization of multiphoton lasing from carbon nanodot microcavities [J]. Nanoscale, 2017, 9(18): 5957-5963.
EATON S W, FU A, WONG A B, et al. Semiconductor nanowire lasers [J]. Nat. Rev. Mater., 2016, 1(6): 16028-1-11.
LIN J, HU Y S, LV Y, et al. Light gain amplification in microcavity organic semiconductor laser diodes under electrical pumping [J]. Sci. Bull., 2017, 62(24): 1637-1638.
MISHRA G, PRAKASH B, SHARMA G. Spontaneous emission of radiation by relativistic electrons in a gyro-klystron [J]. Radiat. Phys. Chem., 2016, 120: 38-43. doi: 10.1016/j.radphyschem.2015.11.024http://dx.doi.org/10.1016/j.radphyschem.2015.11.024
唐阳. 全无机钙钛矿CsPbBr3的形貌调控与放大自发辐射研究 [D]. 北京: 北京交通大学, 2018.
TANG Y. Amplified Spontaneous Emission from Morphological Controlled All⁃inorganic Peroveskite CsPbBr3 [D]. Beijing: Beijing Jiaotong University, 2018. (in Chinese)
WU J J, WANG X D, LIAO L S. Advances in energy‐level systems of organic lasers [J]. Laser Photonics Rev., 2022, doi: 10.1002/lpor.202200366http://dx.doi.org/10.1002/lpor.202200366.
QU S N, ZHOU D, TIAN Z, et al. Carbon dot⁃based lasers: an introductory survey [M]. TONG C Z, JAGADISH C. Nanoscale Semiconductor Lasers. Netherlands: Elsevier, 2019: 1-15.
韩莉坤, 蒋亚东, 李伟, 等. 新型三腈基呋喃衍生物光谱特性的研究 [J]. 光学学报, 2008, 28(5): 927-931. doi: 10.3321/j.issn:0253-2239.2008.05.021http://dx.doi.org/10.3321/j.issn:0253-2239.2008.05.021
HAN L K, JIANG Y D, LI W, et al. Study on spectral properties of a new tricyanofuran derivative [J]. Acta Opt. Sinica, 2008, 28(5): 927-931. (in Chinese). doi: 10.3321/j.issn:0253-2239.2008.05.021http://dx.doi.org/10.3321/j.issn:0253-2239.2008.05.021
PENG X, LIU L Y, WU J F, et al. Wide-range amplified spontaneous emission wavelength tuning in a solid-state dye waveguide [J]. Opt. Lett., 2000, 25(5): 314-316.
GEETHA K, RAJESH M, NAMPOORI V P N, et al. Propagation characteristics and wavelength tuning of amplified spontaneous emission from dye-doped polymer [J]. Appl. Opt., 2006, 45(4): 764-769. doi: 10.1364/AO.45.000764http://dx.doi.org/10.1364/AO.45.000764
丁海芳, 张飞雁, 林豪, 等. 荧光染料掺杂DNA-CTMA薄膜的放大自发辐射特性 [J]. 中国激光, 2011, 38(5): 0506001-1-6. doi: 10.3788/cjl201138.0506001http://dx.doi.org/10.3788/cjl201138.0506001
DING H F, ZHANG F Y, LIN H, et al. Amplified spontaneous emission of fluorescent dye-doped DNA-CTMA thin films [J]. Chin. J. Lasers, 2011, 38(5): 0506001-1-6. (in Chinese). doi: 10.3788/cjl201138.0506001http://dx.doi.org/10.3788/cjl201138.0506001
KESHMARZI E K, TAIT R N, BERINI P. Near infrared amplified spontaneous emission in a dye-doped polymeric waveguide for active plasmonic applications [J]. Opt. Express, 2014, 22(10): 12452-12460. doi: 10.1364/OE.22.012452http://dx.doi.org/10.1364/OE.22.012452
MAI V T N, SHUKLA A, MAMADA M, et al. Low amplified spontaneous emission threshold and efficient electroluminescence from a carbazole derivatized excited-state intramolecular proton transfer dye [J]. ACS Photonics, 2018, 5(11): 4447-4455.
WEI Y H, DONG H Y, WEI C, et al. Wavelength‐tunable microlasers based on the encapsulation of organic dye in metal⁃organic frameworks [J]. Adv. Mater., 2016, 28(34): 7424-7429.
XU F F, LI Y J, LV Y C, et al. Flat-panel laser displays based on liquid crystal microlaser arrays [J]. CCS Chem., 2020, 2(6): 369-375. doi: 10.31635/ccschem.020.202000162http://dx.doi.org/10.31635/ccschem.020.202000162
QIAO C, ZHANG C H, ZHOU Z H, et al. An optically reconfigurable Förster resonance energy transfer process for broadband switchable organic single-mode microlasers [J]. CCS Chem., 2022, 4(1): 250-258.
ZHANG C, ZOU C L, YAN Y L, et al. Two-photon pumped lasing in single-crystal organic nanowire exciton polariton resonators [J]. J. Am. Chem. Soc., 2011, 133(19): 7276-7279.
ZHANG W, YAN Y L, GU J M, et al. Low‐threshold wavelength‐switchable organic nanowire lasers based on excited‐state intramolecular proton transfer [J]. Angew. Chem. Int. Ed., 2015, 127(24): 7231-7235.
DONG H Y, ZHANG C H, SHU F J, et al. Superkinetic growth of oval organic semiconductor microcrystals for chaotic lasing [J]. Adv. Mater., 2021, 33(18): 2100484-1-9.
REHMAN A, IQBAL K, AZAM F, et al. To enhance the dyeability of cotton fiber with the application of reactive dyes by using chitosan [J]. J. Text. Inst., 2021, 112(8): 1208-1212.
FINLAYSON C E, RUSSELL D M, RAMSDALE C M, et al. Amplified spontaneous emission in close‐packed films of semiconductor nanocrystals using picosecond excitation [J]. Adv. Funct. Mater., 2002, 12(8): 537-540.
KAZES M, SARAIDAROV T, REISFELD R, et al. Organic‐inorganic sol‐gel composites incorporating semiconductor nanocrystals for optical gain applications [J]. Adv. Mater., 2009, 21(17): 1716-1720.
LIAO Y L, XING G C, MISHRA N, et al. Low Threshold, amplified spontaneous emission from core‐seeded semiconductor nanotetrapods incorporated into a sol-gel matrix [J]. Adv. Mater., 2012, 24(23): OP159-OP164.
PINCHETTI V, MEINARDI F, CAMELLINI A, et al. Effect of core/shell interface on carrier dynamics and optical gain properties of dual-color emitting CdSe/CdS nanocrystals [J]. ACS Nano, 2016, 10(7): 6877-6887.
YANG H Y, LI S, ZHANG L, et al. Observation of high-density multi-excitons in medium-size CdSe/CdZnS/ZnS colloidal quantum dots through transient spectroscopy and their optical gain properties [J]. Nanoscale, 2022, 14(14): 5369-5376.
KONDO S, SUZUKI K, SAITO T, et al. Photoluminescence and stimulated emission from microcrystalline CsPbCl3 films prepared by amorphous-to-crystalline transformation [J]. Phys. Rev. B, 2004, 70(20): 205322-1-7.
KONDO S, OHSAWA H, SAITO T, et al. Room-temperature stimulated emission from microcrystalline CsPbCl3 films [J]. Appl. Phys. Lett., 2005, 87(13): 131912-1-3.
XING G C, MATHEWS N, LIM S S, et al. Low-temperature solution-processed wavelength-tunable perovskites for lasing [J]. Nat. Mater., 2014, 13(5): 476-480. doi: 10.1038/nmat3911http://dx.doi.org/10.1038/nmat3911
KONDO S, TAKAHASHI K, NAKANISH T, et al. High intensity photoluminescence of microcrystalline CsPbBr3 films: evidence for enhanced stimulated emission at room temperature [J]. Curr. Appl. Phys., 2007, 7(1): 1-5.
PROTESESCU L, YAKUNIN S, BODNARCHUK M I, et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X= Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut [J]. Nano Lett., 2015, 15(6): 3692-3696.
YAKUNIN S, PROTESESCU L, KRIEG F, et al. Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites [J]. Nat. Commun., 2015, 6(1): 8056-1-8.
BALENA A, PERULLI A, FERNANDEZ M, et al. Temperature dependence of the amplified spontaneous emission from CsPbBr3 nanocrystal thin films [J]. J. Phys. Chem. C, 2018, 122(10): 5813-5819.
VYBORNYI O, YAKUNIN S, KOVALENKO M V. Polar-solvent-free colloidal synthesis of highly luminescent alkylammonium lead halide perovskite nanocrystals [J]. Nanoscale, 2016, 8(12): 6278-6283.
PROTESESCU L, YAKUNIN S, KUMAR S, et al. Dismantling the “red wall” of colloidal perovskites: highly luminescent formamidinium and formamidinium⁃cesium lead iodide nanocrystals [J]. ACS Nano, 2017, 11(3): 3119-3134.
王军丽. 高效固态发光多色碳点的制备、发光机制及应用研究[D]. 太原: 太原理工大学, 2020.
WANG J L. Preparation, Luminescence Mechanism and Application of High Efficiency Solid⁃State Carbon Dots with Multicolor Emission [D]. Taiyuan: Taiyuan University of Technology, 2020. (in Chinese)
ZHANG W F, TANG L B, YU S F, et al. Observation of white-light amplified spontaneous emission from carbon nanodots under laser excitation [J]. Opt. Mater. Express, 2012, 2(4): 490-495.
ZHANG W F, ZHU H, YU S F, et al. Observation of lasing emission from carbon nanodots in organic solvents [J]. Adv. Mater., 2012, 24(17): 2263-2267.
ZHU H, ZHANG W F, YU S F. Realization of lasing emission from graphene quantum dots using titanium dioxide nanoparticles as light scatterers [J]. Nanoscale, 2013, 5(5): 1797-1802.
YUAN F L, XI Z F, SHI X Y, et al. Ultrastable and low-threshold random lasing from narrow-bandwidth-emission triangular carbon quantum dots [J]. Adv. Opt. Mater., 2019, 7(2): 1801202.
ZHANG Y Q, HU Y S, LIN J, et al. Excitation wavelength independence: toward low-threshold amplified spontaneous emission from carbon nanodots [J]. ACS Appl. Mater. Interfaces, 2016, 8(38): 25454-25460.
CAO M X, YANG S W, ZHANG Y T, et al. Tunable amplified spontaneous emission in graphene quantum dots doped cholesteric liquid crystals [J]. Nanotechnology, 2017, 28(24): 245202-1-6.
YADAV A, BAI L, YANG Y M, et al. Lasing behavior of surface functionalized carbon quantum dot/RhB composites [J]. Nanoscale, 2017, 9(16): 5049-5054.
LIU H Z, WANG F, WANG Y P, et al. Whispering gallery mode laser from carbon dot-NaCl hybrid crystals [J]. ACS Appl. Mater. Interfaces, 2017, 9(21): 18248-18253.
QU S N, LIU X Y, GUO X Y, et al. Amplified spontaneous green emission and lasing emission from carbon nanoparticles [J]. Adv. Funct. Mater., 2014, 24(18): 2689-2695.
ZHANG Y Q, SONG H Q, WANG L, et al. Solid-state red laser with a single longitudinal mode from carbon dots [J]. Angew. Chem., 2021, 133(48): 25718-25725.
DHANKER R, BRIGEMAN A N, LARSEN A V, et al. Random lasing in organo-lead halide perovskite microcrystal networks [J]. Appl. Phys. Lett., 2014, 105(15): 151112-1-5.
SHI Z F, SUN X G, WU D, et al. Near-infrared random lasing realized in a perovskite CH3NH3PbI3 thin film [J]. J. Mater. Chem. C, 2016, 4(36): 8373-8379.
DUONG N M H, REGAN B, TOTH M, et al. A random laser based on hybrid fluorescent dye and diamond nanoneedles [J]. Phys. Status Solidi (RRL)‐Rapid Res. Lett., 2019, 13(2): 1800513.
YIN J J, FENG G Y, ZHOU S H, et al. The shape effect of Au particles on random laser action in disordered media of Rh6G dye doped with PMMA polymer [J]. J. Mod. Opt., 2016, 63(19): 1998-2002.
LIAO W C, LIAO Y M, SU C T, et al. Plasmonic carbon-dot-decorated nanostructured semiconductors for efficient and tunable random laser action [J]. ACS Appl. Nano Mater., 2018, 1(1): 152-159.
XU B Y, GAO Z H, YANG S, et al. Multicolor random lasers based on perovskite quantum dots embedded in intrinsic Pb-MOFs [J]. J. Phys. Chem. C, 2021, 125(46): 25757-25764.
WANG J J, ZHANG S F, LI Y F, et al. Ultra‐broadband random laser and white‐light emissive carbon dots/crystal in‐situ hybrids [J]. Small, 2022, 18(41): 2203152.
应安妮. 基于介质微腔阵列的光场调控及在光电探测器上的应用 [D]. 厦门: 厦门大学, 2019.
YING A N. Dielectric Micro‐cavity Arrays Based Light Manipulation and Its Application in Photodetectors [D]. Xiamen: Xiamen University, 2019. (in Chinese)
ZHANG Q, HA S T, LIU X F, et al. Room-temperature near-infrared high-Q perovskite whispering-gallery planar nanolasers [J]. Nano Lett., 2014, 14(10): 5995-6001.
ZHANG Q, SU R, LIU X F, et al. High-quality whispering-gallery-mode lasing from cesium lead halide perovskite nanoplatelets [J]. Adv. Funct. Mater., 2016, 26(34): 6238-6245.
DUAN R, ZHANG Z T, XIAO L, et al. Ultralow‐threshold and high‐quality whispering‐gallery‐mode lasing from colloidal core/hybrid‐shell quantum wells [J]. Adv. Mater., 2022, 34(13): 2108884.
PARAFINIUK K, SZNITKO L, WAWRZYNCZYK D, et al. Enlargement of the organic solid-state DFB laser wavelength tuning range by the use of two complementary luminescent dyes doped into the host matrix [J]. Phys. Chem. Chem. Phys., 2017, 19(27): 18068-18075.
ZHANG L, LIAO C, LV B H, et al. Single-mode lasing from “Giant” CdSe/CdS core-shell quantum dots in distributed feedback structures [J]. ACS Appl. Mater. Interfaces, 2017, 9(15): 13293-13303.
BRENNER P, STULZ M, KAPP D, et al. Highly stable solution processed metal-halide perovskite lasers on nanoimprinted distributed feedback structures [J]. Appl. Phys. Lett, 2016, 109(14): 141106
MATHIES F, BRENNER P, HERNANDEZ-SOSA G, et al. Inkjet-printed perovskite distributed feedback lasers [J]. Opt. Express, 2018, 26(2): A144-A152.
QIN C J, SANDANAYAKA A S D, ZHAO C Y, et al. Stable room-temperature continuous-wave lasing in quasi-2D perovskite films [J]. Nature, 2020, 585(7823): 53-57. doi: 10.1038/s41586-020-2621-1http://dx.doi.org/10.1038/s41586-020-2621-1
LIU G D, JIA S T, WANG J, et al. Toward microlasers with artificial structure based on single-crystal ultrathin perovskite films [J]. Nano Lett., 2021, 21(20): 8650-8656.
ZHU H M, FU Y P, MENG F, et al. Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors [J]. Nat. Mater., 2015, 14(6): 636-642. doi: 10.1038/nmat4271http://dx.doi.org/10.1038/nmat4271
CHEN S T, ZHANG C, LEE J, et al. High‐Q, low‐threshold monolithic perovskite thin‐film vertical‐cavity lasers [J]. Adv. Mater., 2017, 29(16): 1604781-1-8.
0
浏览量
290
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构