浏览全部资源
扫码关注微信
1.哈尔滨工业大学 材料科学与工程学院, 黑龙江 哈尔滨 150006
2.江汉大学 光电化学材料与器件教育部重点实验室, 湖北 武汉 430056
[ "陆梦瑶(1999-),女,辽宁锦州人,硕士研究生,2021年于大连理工大学获得学士学位,主要从事有机发光材料的研究。 E-mail: 21S009007@stu.hit.edu.cn" ]
[ "张勇(1980-),男,河南周口人,博士,教授,2007年于华南理工大学获得博士学位,主要从事有机光电材料的研究。 E-mail: yongzhang@hit.edu.cn" ]
纸质出版日期:2022-12-05,
收稿日期:2022-07-14,
修回日期:2022-08-03,
扫 描 看 全 文
陆梦瑶,宋祥安,邹盛南等.基于嘧啶及其衍生物受体的热激活延迟荧光材料研究进展[J].发光学报,2022,43(12):1892-1904.
LU Meng-yao,SONG Xiang-an,ZOU Sheng-nan,et al.Recent Progress of Thermally Activated Delayed Fluorescent Materials Based on Pyrimidine and Its Derivative Acceptors[J].Chinese Journal of Luminescence,2022,43(12):1892-1904.
陆梦瑶,宋祥安,邹盛南等.基于嘧啶及其衍生物受体的热激活延迟荧光材料研究进展[J].发光学报,2022,43(12):1892-1904. DOI: 10.37188/CJL.20220273.
LU Meng-yao,SONG Xiang-an,ZOU Sheng-nan,et al.Recent Progress of Thermally Activated Delayed Fluorescent Materials Based on Pyrimidine and Its Derivative Acceptors[J].Chinese Journal of Luminescence,2022,43(12):1892-1904. DOI: 10.37188/CJL.20220273.
嘧啶可作为构建D⁃A型热激活延迟荧光(TADF)材料的常用受体,其强吸电子特性和灵活的取代效应有利于形成多样的分子结构,为实现高效的有机电致发光提供了可能。近年来,基于嘧啶受体的分子结构设计取得了重要进展,研究方向从以D⁃A⁃D型为主的对称分子逐渐向不对称分子过渡。喹唑啉是TADF材料的一类新型受体,具有苯并嘧啶的稠环结构,延展的共轭平面使其表现出良好潜力,通过合理的分子修饰,能够有效改善器件的发光性能。本文以嘧啶受体核为基础,围绕分子结构、光物理特性和OLED器件性能等问题,简要总结了基于嘧啶及其衍生物喹唑啉受体的热激活延迟荧光材料研究进展,并对喹唑啉基TADF分子广阔的发展前景进行了展望。
Pyrimidine can be used as a common acceptor for the construction of D-A type thermally activated delayed fluorescent(TADF) materials. Its strong electron absorption characteristics and flexible substitution effect are advantageous to the formation of diversified molecular structures, which lends probability to realize efficient organic electroluminescence. In recent years, important progress has been made in the molecular structure design based on pyrimidine acceptor. The research direction has transformed from symmetrical molecules dominated by D-A-D type to asymmetric molecules gradually. Quinazoline is a new acceptor of TADF materials with fused bicyclic structure of benzene and pyrimidine rings, which shows good potential as a result of extended conjugate plane. Through the reasonable molecular modification, it can improve the luminescence performance of the device effectively. In this review, we summarize the research progress of thermally activated delayed fluorescent materials based on pyrimidine and its derivative quinazoline acceptors briefly with molecular structure, photophysical properties and device performances, and look forward to the broad development prospect of TADF materials based on quinazoline.
热激活延迟荧光嘧啶受体喹唑啉有机发光二极管
thermally activated delayed fluorescencepyrimidine-based acceptorquinazolineorganic light-emitting diodes
TANG C W, VANSLYKE S A. Organic electroluminescent diodes [J]. Appl. Phys. Lett., 1987, 51(12): 913-915. doi: 10.1063/1.98799http://dx.doi.org/10.1063/1.98799
ENDO A, SATO K, YOSHIMURA K, et al. Efficient up-conversion of triplet excitons into a singlet state and its application for organic light emitting diodes [J]. Appl. Phys. Lett., 2011, 98(8): 083302.
UOYAMA H, GOUSHI K, SHIZU K, et al. Highly efficient organic light-emitting diodes from delayed fluorescence [J]. Nature, 2012, 492(7428): 234-238. doi: 10.1038/nature11687http://dx.doi.org/10.1038/nature11687
刘婷婷, 李淑红, 王文军, 等. 基于器件结构提高TADF-OLED器件的发光性能 [J]. 发光学报, 2020, 41(1): 77-85. doi: 10.3788/fgxb20204101.0077http://dx.doi.org/10.3788/fgxb20204101.0077
LIU T T, LI S H, WANG W J, et al. Enhanced luminescent properties of TADF-OLEDs based on device structures [J]. Chin. J. Lumin., 2020, 41(1): 77-85. (in Chinese). doi: 10.3788/fgxb20204101.0077http://dx.doi.org/10.3788/fgxb20204101.0077
卢伶, 张祥, 赵青华. 热激活延迟荧光材料在有机电致发光器件中的研究进展 [J]. 材料导报, 2019, 33(15): 2589-2601. doi: 10.11896/cldb.19010093http://dx.doi.org/10.11896/cldb.19010093
LU L, ZHANG X, ZHAO Q H. Research progress on thermal activated delayed fluorescence materials for organic light-emitting diodes [J]. Mater. Rep., 2019, 33(15): 2589-2601. (in Chinese). doi: 10.11896/cldb.19010093http://dx.doi.org/10.11896/cldb.19010093
LI C L, DUAN R H, LIANG B Y, et al. Deep-red to near-infrared thermally activated delayed fluorescence in organic solid films and electroluminescent devices [J]. Angew. Chem. Int. Ed., 2017, 56(38): 11525-11529.
NAVEEN K R, CP K P, BRAVEENTH R, et al. Molecular design strategy for orange red thermally activated delayed fluorescence emitters in organic light-emitting diodes (OLEDs) [J]. Chem. Eur. J., 2022, 28(12): e202103532. doi: 10.1002/chem.202281261http://dx.doi.org/10.1002/chem.202281261
WANG S P, YAN X J, CHENG Z, et al. Highly efficient near-infrared delayed fluorescence organic light emitting diodes using a phenanthrene-based charge-transfer compound [J]. Angew. Chem. Int. Ed., 2015, 54(44): 13068-13072.
YAO L, YANG B, MA Y G. Progress in next-generation organic electroluminescent materials: material design beyond exciton statistics [J]. Sci. China Chem., 2014, 57(3): 335-345.
曹云锋, 李旭萍, 卢建军. 基于热活化延迟荧光双发射的有机电子给体-受体型材料研究进展 [J]. 发光学报, 2021, 42(9): 1386-1395. doi: 10.37188/CJL.20210181http://dx.doi.org/10.37188/CJL.20210181
CAO Y F, LI X P, LU J J. Research progress of thermally activated delayed fluorescence materials with dual-emission based on donor-acceptor system [J]. Chin. J. Lumin., 2021, 42(9): 1386-1395. (in Chinese). doi: 10.37188/CJL.20210181http://dx.doi.org/10.37188/CJL.20210181
马志华, 马荣荣, 董文月, 等. 树枝状热活化延迟荧光材料研究进展 [J]. 发光学报, 2021, 42(7): 904-916. doi: 10.37188/CJL.20210099http://dx.doi.org/10.37188/CJL.20210099
MA Z H, MA R R, DONG W Y, et al. Recent advances on thermally activated delayed fluorescence dendrimers [J]. Chin. J. Lumin., 2021, 42(7): 904-916. (in Chinese). doi: 10.37188/CJL.20210099http://dx.doi.org/10.37188/CJL.20210099
KATO Y, SASABE H, HAYASAKA Y, et al. A sky blue thermally activated delayed fluorescence emitter to achieve efficient white light emission through in situ metal complex formation [J]. J. Mater. Chem. C, 2019, 7(11): 3146-3149.
KOMATSU R, SASABE H, SEINO Y, et al. Light-blue thermally activated delayed fluorescent emitters realizing a high external quantum efficiency of 25% and unprecedented low drive voltages in OLEDs [J]. J. Mater. Chem. C, 2016, 4(12): 2274-2278.
ZHANG Q S, LI J, SHIZU K, et al. Design of efficient thermally activated delayed fluorescence materials for pure blue organic light emitting diodes [J]. J. Am. Chem. Soc., 2012, 134(36): 14706-14709.
RAJAMALLI P, SENTHILKUMAR N, GANDEEPAN P, et al. A method for reducing the singlet-triplet energy gaps of TADF materials for improving the blue OLED efficiency [J]. ACS Appl. Mater. Interfaces, 2016, 8(40): 27026-27034. doi: 10.1021/acsami.6b10678http://dx.doi.org/10.1021/acsami.6b10678
ACHELLE S, HODÉE M, MASSUE J, et al. Diazine-based thermally activated delayed fluorescence chromophores [J]. Dyes Pigm., 2022, 200: 110157.
YU L, YANG C L. Multipath exciton harvesting in diazine-based luminescent materials and their applications for organic light-emitting diodes [J]. J. Mater. Chem. C, 2021, 9(48): 17265-17286. doi: 10.1039/D1TC04397Hhttp://dx.doi.org/10.1039/D1TC04397H
WU K L, ZHANG T, ZHAN L S, et al. Optimizing optoelectronic properties of pyrimidine-based TADF emitters by changing the substituent for organic light-emitting diodes with external quantum efficiency close to 25% and slow efficiency roll-off [J]. Chem. Eur. J., 2016, 22(31): 10860-10866.
KOMATSU R, SASABE H, NAKAO K, et al. Unlocking the potential of pyrimidine conjugate emitters to realize high‐performance organic light‐emitting devices [J]. Adv. Opt. Mater., 2017, 5(2): 1600675.
XIANG Y P, ZHAO Y B, XU N, et al. Halogen-induced internal heavy-atom effect shortening the emissive lifetime and improving the fluorescence efficiency of thermally activated delayed fluorescence emitters [J]. J. Mater. Chem. C, 2017, 5(46): 12204-12210. doi: 10.1039/C7TC04181Khttp://dx.doi.org/10.1039/C7TC04181K
XIANG Y P, LI P, GONG S L, et al. Acceptor plane expansion enhances horizontal orientation of thermally activated delayed fluorescence emitters [J]. Sci. Adv., 2020, 6(41): eaba7855. doi: 10.1126/sciadv.aba7855http://dx.doi.org/10.1126/sciadv.aba7855
PARK I S, LEE J, YASUDA T. High-performance blue organic light-emitting diodes with 20% external electroluminescence quantum efficiency based on pyrimidine-containing thermally activated delayed fluorescence emitters [J]. J. Mater. Chem. C, 2016, 4(34): 7911-7916.
LI B W, LI Z Y, HU T P, et al. Highly efficient blue organic light-emitting diodes from pyrimidine-based thermally activated delayed fluorescence emitters [J]. J. Mater. Chem. C, 2018, 6(9): 2351-2359.
LI B W, LI Z Y, WEI X F, et al. Molecular engineering of thermally activated delayed fluorescence emitters to concurrently achieve high performance and reduced efficiency roll-off in organic light-emitting diodes [J]. J. Mater. Chem. C, 2019, 7(32): 9966-9974.
LI B W, LI Z Y, SONG X A, et al. Pyrimidine-based thermally activated delayed fluorescent materials with unique asymmetry for highly-efficient organic light-emitting diodes [J]. Dyes Pigm., 2022, 203: 110373.
KOMATSU R, OHSAWA T, SASABE H, et al. Manipulating the electronic excited state energies of pyrimidine-based thermally activated delayed fluorescence emitters to realize efficient deep-blue emission [J]. ACS Appl. Mater. Interfaces, 2017, 9(5): 4742-4749.
SEREVIČIUS T, SKAISGIRIS R, DODONOVA J, et al. Emission wavelength dependence on the rISC rate in TADF compounds with large conformational disorder [J]. Chem. Commun., 2019, 55(13): 1975-1978.
PARK I S, KOMIYAMA H, YASUDA T. Pyrimidine-based twisted donor-acceptor delayed fluorescence molecules: a new universal platform for highly efficient blue electroluminescence [J]. Chem. Sci., 2017, 8(2): 953-960.
NAKAO K, SASABE H, KOMATSU R, et al. Significant enhancement of blue OLED performances through molecular engineering of pyrimidine-based emitter [J]. Adv. Opt. Mater, 2017, 5(6): 1600843.
SEREVIČIUS T, SKAISGIRIS R, DODONOVA J, et al. Minimization of solid-state conformational disorder in donor-acceptor TADF compounds [J]. Phys. Chem. Chem. Phys., 2020, 22(1): 265-272.
SEREVIČIUS T, SKAISGIRIS R, DODONOVA J, et al. Achieving submicrosecond thermally activated delayed fluorescence lifetime and highly efficient electroluminescence by fine-tuning of the phenoxazine-pyrimidine structure [J]. ACS Appl. Mater. Interfaces, 2020, 12(9): 10727-10736.
SEREVIČIUS T, BUČIŪNAS T, BUCEVIČIUS J, et al. Room temperature phosphorescence vs. thermally activated delayed fluorescence in carbazole⁃pyrimidine cored compounds [J]. J. Mater. Chem. C, 2018, 6(41): 11128-11136.
KOMATSU R, SASABE H, KIDO J. Recent progress of pyrimidine derivatives for high-performance organic light-emitting devices [J]. J. Photonics Energy, 2018, 8(3): 032108.
HELD F E, GURYEV A A, FRÖHLICH T, et al. Facile access to potent antiviral quinazoline heterocycles with fluorescence properties via merging metal-free domino reactions [J]. Nat. Commun., 2017, 8: 15071.
MOTOYAMA M, DOAN T H, HIBNER-KULICKA P, et al. Synthesis and structure-photophysics evaluation of 2-N-Amino-quinazolines: small molecule fluorophores for solution and solid state [J]. Chem. Asian J., 2021, 16(15): 2087-2099.
ZHANG Z, XIE J W, WANG H B, et al. Synthesis, photophysical and optoelectronic properties of quinazoline-centered dyes and their applications in organic light-emitting diodes [J]. Dyes Pigm., 2016, 125: 299-308.
KIM S M, YUN J H, HAN S H, et al. A design strategy of bipolar host materials for more than 30 times extended lifetime in phosphorescent organic light-emitting diodes using benzocarbazole and quinazoline [J]. J. Mater. Chem. C, 2017, 5(35): 9072-9079.
KIM D Y, KANG J S, LEE S E, et al. Blue organic light-emitting diodes based on fluorene-bridged quinazoline and quinoxaline derivatives [J]. Luminescence, 2017, 32(7): 1180-1185.
LI B W, WANG Z H, SU S J, et al. Quinazoline‐based thermally activated delayed fluorecence for high‐performance OLEDs with external quantum efficiencies exceeding 20% [J]. Adv. Opt. Mater., 2019, 7(9): 1801496.
LI B W, SONG X A, JIANG X, et al. Stable deep blue organic light emitting diodes with CIE of y < 0.10 based on quinazoline and carbazole units [J]. Chin. Chem. Lett., 2020, 31(5): 1188-1192.
LIU D, ZHANG Z Y, ZHANG H Y, et al. A novel approach towards white photoluminescence and electroluminescence by controlled protonation of a blue fluorophore [J]. Chem. Commun., 2013, 49(85): 10001-10003.
LI B W, LI Z Y, GUO F Y, et al. Realizing efficient single organic molecular white light-emitting diodes from conformational isomerization of quinazoline-based emitters [J]. ACS Appl. Mater. Interfaces, 2020, 12(12): 14233-14243.
KERUCKIENE R, VEKTERYTE S, URBONAS E, et al. Synthesis and properties of quinazoline-based versatile exciplex-forming compounds [J]. Beilstein J. Org. Chem., 2020, 16: 1142-1153.
LI P, XIANG Y P, GONG S L, et al. Quinazoline-based thermally activated delayed fluorescence emitters for high-performance organic light-emitting diodes with external quantum efficiencies about 28% [J]. J. Mater. Chem. C, 2021, 9(37): 12633-12641. doi: 10.1039/D1TC02633Jhttp://dx.doi.org/10.1039/D1TC02633J
0
浏览量
230
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构