浏览全部资源
扫码关注微信
华南理工大学 材料科学与工程学院, 分子聚集发光中心, 高分子光电材料与器件研究所, 广东省分子聚集发光重点实验室, 发光材料与器件国家重点实验室, 广东 广州 510640
[ "马东阁(1967-),男,辽宁兴城人,博士,教授,博士生导师,1995年于吉林大学获得博士学位,主要从事有机光电器件与物理及其应用的研究。" ]
纸质出版日期:2023-01-05,
收稿日期:2022-07-01,
修回日期:2022-07-20,
移动端阅览
马东阁.OLEDs中的激子及其高效利用[J].发光学报,2023,44(01):174-185.
MA Dongge.Excitons and Their Efficient Utilization in OLEDs[J].Chinese Journal of Luminescence,2023,44(01):174-185.
马东阁.OLEDs中的激子及其高效利用[J].发光学报,2023,44(01):174-185. DOI: 10.37188/CJL.20220259.
MA Dongge.Excitons and Their Efficient Utilization in OLEDs[J].Chinese Journal of Luminescence,2023,44(01):174-185. DOI: 10.37188/CJL.20220259.
有机发光二极管(OLEDs)是基于有机半导体的发光器件,由于具有自发光、响应速度快、发光颜色可调、轻薄、大面积柔性可弯曲等优点,被认为是新一代的显示和照明技术。OLEDs是通过注入的电子和空穴复合形成激子并辐射发光的过程,因此如何有效利用激子,特别是三线态激子,已经成为OLEDs材料和器件研究的重要课题。其中,如何把三线态激子能量转换成单线态激子,并最终实现100%激子的荧光发射更具有应用价值,最近几年这方面的研究已经取得了显著进展。本文从OLEDs的工作原理和发光过程出发,详细介绍了制备高效率荧光OLEDs的有效方法及其最新进展,并对未来发展方向进行了展望,为OLEDs材料和器件的研究提供重要参考。
Organic light emitting diodes(OLEDs) are light-emitting devices based on organic semiconductors. They are considered as a new generation of display and lighting technology because of their advantages such as self-illumination, fast response, adjustable light-emitting color, lightness, large area flexibility and foldability,
etc
. The emission of OLEDs is a process of the radiative decay of excitons formed by recombination of injected electrons and holes. Therefore, how to effectively use excitons, especially the use of triplet excitons, has become an important topic in the research on materials and devices of OLEDs. Among them, how to convert triplet exciton energies into singlet excitons and finally realize the fluorescence emission of 100% excitons has more application value. In recent years, significant progresses have been made in this field. This paper introduces the effective methods for the fabrication of high efficiency fluorescence OLEDs in detail based on working mechanism and luminescence processes of OLEDs and their latest progresses, and prospects the future development directions, which provide an important reference for the research on materials and devices of OLEDs.
有机发光激子高效利用单线态和三线态
organic light-emittingexcitonsefficient utilizationsinglet and triplet states
FORREST S R. Organic Electronics: Foundations to Applications [M]. Oxford, United Kingdom: Oxford University Press, 2020. doi: 10.1093/oso/9780198529729.001.0001http://dx.doi.org/10.1093/oso/9780198529729.001.0001
彭俊彪, 兰林锋. 印刷显示材料与技术 [M]. 北京: 科学出版社, 2019.
PENG J B, LAN L F. Printed Display Materials and Technology [M]. Beijing: Science Press, 2019. (in Chinese)
于军胜, 黄维. OLED显示技术 [M]. 北京: 电子工业出版社, 2021.
YU J S, HUANG W. OLED Display Technology [M]. Beijing: Electronic Industry Press, 2021. (in Chinese)
WU Z B, MA D G. Recent advances in white organic light-emitting diodes [J]. Mater. Sci. Eng. R, 2016, 107: 1-42. doi: 10.1016/j.mser.2016.06.001http://dx.doi.org/10.1016/j.mser.2016.06.001
TANG C W, VANSLYKE S A. Organic electroluminescent diodes [J]. Appl. Phys. Lett., 1987, 51(12): 913-915. doi: 10.1063/1.98799http://dx.doi.org/10.1063/1.98799
BALDO M A, O’BRIEN D F, YOU Y, et al. Highly efficient phosphorescent emission from organic electroluminescent devices [J]. Nature, 1998, 395(6698): 151-154. doi: 10.1038/25954http://dx.doi.org/10.1038/25954
MA Y G, ZHANG H Y, SHEN J C, et al. Electroluminescence from triplet metal-ligand charge-transfer excited state of transition metal complexes [J]. Synth. Met., 1998, 94(3): 245-248. doi: 10.1016/s0379-6779(97)04166-0http://dx.doi.org/10.1016/s0379-6779(97)04166-0
UOYAMA H, GOUSHI K, SHIZU K, et al. Highly efficient organic light-emitting diodes from delayed fluorescence [J]. Nature, 2012, 492(7428): 234-238. doi: 10.1038/nature11687http://dx.doi.org/10.1038/nature11687
BRÜTTING W, FRISCHEISEN J. Device efficiency of organic light⁃emitting diodes [M]. BRÜTTING W, ADACHI C. Physics of Organic Semiconductors. Weinheim: Wiley-VCH, 2012. doi: 10.1002/9783527654949.ch15http://dx.doi.org/10.1002/9783527654949.ch15
KIDO J, IIZUMI Y. Fabrication of highly efficient organic electroluminescent devices [J]. Appl. Phys. Lett., 1998, 73(19): 2721-2723. doi: 10.1063/1.122570http://dx.doi.org/10.1063/1.122570
NAKANOTANI H, HIGUCHI T, FURUKAWA T, et al. High-efficiency organic light-emitting diodes with fluorescent emitters [J]. Nat. Commun., 2014, 5: 4016-1-7. doi: 10.1038/ncomms5016http://dx.doi.org/10.1038/ncomms5016
WANG Q, TIAN Q S, ZHANG Y L, et al. High-efficiency organic light-emitting diodes with exciplex hosts [J]. J. Mater. Chem. C, 2019, 7(37): 11329-11360. doi: 10.1039/c9tc03092ahttp://dx.doi.org/10.1039/c9tc03092a
XU Y W, XU P, HU D H, et al. Recent progress in hot exciton materials for organic light-emitting diodes [J]. Chem. Soc. Rev., 2021, 50(2): 1030-1069. doi: 10.1039/d0cs00391chttp://dx.doi.org/10.1039/d0cs00391c
MA D G. Status and prospects of aggregation-induced emission materials in organic optoelectronic devices [J]. Top. Curr. Chem., 2021, 379(3): 16. doi: 10.1007/s41061-021-00328-8http://dx.doi.org/10.1007/s41061-021-00328-8
CHIANG C J, KIMYONOK A, ETHERINGTON M K, et al. Ultrahigh efficiency fluorescent single and Bi-layer organic light emitting diodes: the key role of triplet Fusion [J]. Adv. Funct. Mater., 2013, 23(6): 739-746. doi: 10.1002/adfm.201201750http://dx.doi.org/10.1002/adfm.201201750
SUZUKI T, NONAKA Y, WATABE T, et al. Highly efficient long-life blue fluorescent organic light-emitting diode exhibiting triplet‐triplet annihilation effects enhanced by a novel hole-transporting material [J]. Jpn. J. Appl. Phys., 2014, 53(5): 052102-1-6. doi: 10.7567/jjap.53.052102http://dx.doi.org/10.7567/jjap.53.052102
KUKHTA N A, MATULAITIS T, VOLYNIUK D, et al. Deep-blue high-efficiency TTA OLED using para- and meta-conjugated cyanotriphenylbenzene and carbazole derivatives as emitter and host [J]. J. Phys. Chem. Lett., 2017, 8(24): 6199-6205. doi: 10.1021/acs.jpclett.7b02867http://dx.doi.org/10.1021/acs.jpclett.7b02867
TANG X Y, BAI Q, SHAN T, et al. Efficient nondoped blue fluorescent organic light-emitting diodes (OLEDs) with a high external quantum efficiency of 9.4%@1 000 cd m-2 based on phenanthroimidazole-anthracene derivative [J]. Adv. Funct. Mater., 2018, 28(11): 1705813-1-8. doi: 10.1002/adfm.201705813http://dx.doi.org/10.1002/adfm.201705813
SALEHI A, DONG C, SHIN D H, et al. Realization of high-efficiency fluorescent organic light-emitting diodes with low driving voltage [J]. Nat. Commun., 2019, 10(1): 2305-1-9. doi: 10.1038/s41467-019-10260-7http://dx.doi.org/10.1038/s41467-019-10260-7
LIU F T, LIU H, TANG X Y, et al. Novel blue fluorescent materials for high-performance nondoped blue OLEDs and hybrid pure white OLEDs with ultrahigh color rendering index [J]. Nano Energy, 2020, 68: 104325-1-10. doi: 10.1016/j.nanoen.2019.104325http://dx.doi.org/10.1016/j.nanoen.2019.104325
NALAOH P, SUNGWORAWONGPANA N, CHASING P, et al. A dimeric π-stacking of anthracene inducing efficiency enhancement in solid-state fluorescence and non-doped deep-blue triplet-triplet annihilation organic light-emitting diodes [J]. Adv. Opt. Mater., 2021, 9(17): 2100500-1-13. doi: 10.1002/adom.202100500http://dx.doi.org/10.1002/adom.202100500
LIM H, WOO S J, HA Y H, et al. Breaking the efficiency limit of deep-blue fluorescent OLEDs based on anthracene derivatives [J]. Adv. Mater., 2022, 34(1): 2100161-1-8. doi: 10.1002/adma.202100161http://dx.doi.org/10.1002/adma.202100161
XIAO S, QIAO X F, LIN C W, et al. In situ quantifying the physical parameters determining the efficiency of OLEDs relying on triplet‐triplet annihilation up-conversion [J]. Adv. Opt. Mater., 2022, 10(6): 2102333-1-8. doi: 10.1002/adom.202102333http://dx.doi.org/10.1002/adom.202102333
XIANG C Y, PENG C, CHEN Y, et al. Origin of sub-bandgap electroluminescence in organic light-emitting diodes [J]. Small, 2015, 11(40): 5439-5443. doi: 10.1002/smll.201501355http://dx.doi.org/10.1002/smll.201501355
CHEN Q S, JIA W Y, CHEN L X, et al. Determining the origin of half-bandgap-voltage electroluminescence in bifunctional rubrene/C60 devices [J]. Sci. Rep., 2016, 6: 25331-1-9. doi: 10.1038/srep25331http://dx.doi.org/10.1038/srep25331
QIAO X F, YUAN P S, MA D G, et al. Electrical pumped energy up-conversion: a non-linear electroluminescence process mediated by triplet-triplet annihilation [J]. Org. Electron., 2017, 46: 1-6. doi: 10.1016/j.orgel.2017.03.020http://dx.doi.org/10.1016/j.orgel.2017.03.020
BALDO M A, THOMPSON M E, FORREST S R. High-efficiency fluorescent organic light-emitting devices using a phosphorescent sensitizer [J]. Nature, 2000, 403(6771): 750-753. doi: 10.1038/35001541http://dx.doi.org/10.1038/35001541
ZHANG D D, DUAN L, LI C, et al. High-efficiency fluorescent organic light-emitting devices using sensitizing hosts with a small singlet-triplet exchange energy [J]. Adv. Mater., 2014, 26(29): 5050-5055. doi: 10.1002/adma.201401476http://dx.doi.org/10.1002/adma.201401476
SONG X Z, ZHANG D D, LU Y, et al. Understanding and manipulating the interplay of wide-energy-gap host and TADF sensitizer in high-performance fluorescence OLEDs [J]. Adv. Mater., 2019, 31(35): 1901923-1-9. doi: 10.1002/adma.201901923http://dx.doi.org/10.1002/adma.201901923
SARMA M, WONG K T. Exciplex: an intermolecular charge-transfer approach for TADF [J]. ACS Appl. Mater. Interfaces, 2018, 10(23): 19279-19304. doi: 10.1021/acsami.7b18318http://dx.doi.org/10.1021/acsami.7b18318
KIM H B, KIM J J. Recent progress on exciplex-emitting OLEDs [J]. J. Inf. Disp., 2019, 20: 105-121. doi: 10.1080/15980316.2019.1650838http://dx.doi.org/10.1080/15980316.2019.1650838
SARMA M, CHEN L M, CHEN Y S, et al. Exciplexes in OLEDs: principles and promises [J]. Mater. Sci. Eng. R, 2022, 150: 100689. doi: 10.1016/j.mser.2022.100689http://dx.doi.org/10.1016/j.mser.2022.100689
LIU X K, CHEN Z, ZHENG C J, et al. Nearly 100% triplet harvesting in conventional fluorescent dopant-based organic light-emitting devices through energy transfer from exciplex [J]. Adv. Mater., 2015, 27(12): 2025-2030. doi: 10.1002/adma.201500013http://dx.doi.org/10.1002/adma.201500013
KIM K H, MOON C K, SUN J W, et al. Triplet harvesting by a conventional fluorescent emitter using reverse intersystem crossing of host triplet exciplex [J]. Adv. Opt. Mater., 2015, 3(7): 895-899. doi: 10.1002/adom.201400644http://dx.doi.org/10.1002/adom.201400644
SHIH C J, LEE C C, YEH T H, et al. Versatile exciplex-forming co-host for improving efficiency and lifetime of fluorescent and phosphorescent organic light-emitting diodes [J]. ACS Appl. Mater. Interfaces, 2018, 10(28): 24090-24098. doi: 10.1021/acsami.8b08281http://dx.doi.org/10.1021/acsami.8b08281
TANG X T, PAN R H, ZHAO X, et al. Full confinement of high-lying triplet states to achieve high-level reverse intersystem crossing in rubrene: a strategy for obtaining the record-high EQE of 16.1% with low efficiency roll-off [J]. Adv. Funct. Mater., 2020, 30(51): 2005765-1-10. doi: 10.1002/adfm.202005765http://dx.doi.org/10.1002/adfm.202005765
LI W J, LIU D D, SHEN F Z, et al. A twisting donor-acceptor molecule with an intercrossed excited state for highly efficient, deep-blue electroluminescence [J]. Adv. Funct. Mater., 2012, 22(13): 2797-2803. doi: 10.1002/adfm.201200116http://dx.doi.org/10.1002/adfm.201200116
XU Y W, LIANG X M, ZHOU X H, et al. Highly efficient blue fluorescent OLEDs based on upper level triplet‐singlet intersystem crossing [J]. Adv. Mater., 2019, 31(12): 1807388-1-8. doi: 10.1002/adma.201807388http://dx.doi.org/10.1002/adma.201807388
LIN C W, HAN P B, XIAO S, et al. Efficiency breakthrough of fluorescence OLEDs by the strategic management of “hot excitons” at highly lying excitation triplet energy levels [J]. Adv. Funct. Mater., 2021, 31(48): 2106912-1-8. doi: 10.1002/adfm.202106912http://dx.doi.org/10.1002/adfm.202106912
XU Z, GU J B, QIAO X F, et al. Highly efficient deep blue aggregation-induced emission organic molecule: a promising multifunctional electroluminescence material for blue/green/orange/red/white OLEDs with superior efficiency and low roll-off [J]. ACS Photonics, 2019, 6(3): 767-778. doi: 10.1021/acsphotonics.8b01724http://dx.doi.org/10.1021/acsphotonics.8b01724
GUO X M, YUAN P S, QIAO X F, et al. Mechanistic study on high efficiency deep blue AIE‐based organic light‐emitting diodes by magneto‐electroluminescence [J]. Adv. Funct. Mater., 2020, 30(9): 1908704-1-8. doi: 10.1002/adfm.201908704http://dx.doi.org/10.1002/adfm.201908704
ZHANG H, ZHANG B, ZHANG Y W, et al. A multifunctional blue-emitting material designed via tuning distribution of hybridized excited-state for high-performance blue and host-sensitized OLEDs [J]. Adv. Funct. Mater., 2020, 30(35): 2002323-1-10. doi: 10.1002/adfm.202002323http://dx.doi.org/10.1002/adfm.202002323
GUO X M, YUAN P S, FAN J Z, et al. Unraveling the important role of high-lying triplet-lowest excited singlet transitions in achieving highly efficient deep-blue AIE-based OLEDs [J]. Adv. Mater., 2021, 33(11): 2006953-1-8. doi: 10.1002/adma.202006953http://dx.doi.org/10.1002/adma.202006953
0
浏览量
905
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构