浏览全部资源
扫码关注微信
1.福州大学 化学学院, 福建 福州 350002
2.中国科学院 福建物质结构研究所, 福建 福州 350002
3.福建省光电信息科技创新实验室, 福建 福州 350108
[ "周泽华(1995-),男,江西南昌人,硕士研究生,2019年于南昌大学获得学士学位,主要从事荧光陶瓷的研究。Email: zhouzehua@fjirsm.ac.cn " ]
[ "黄集权(1980-),男,福建漳州人,博士,研究员,2011年于中国科学院获得博士学位,主要从事光催化材料及LED荧光材料的研究。 E-mail: hjq@fjirsm.ac.cn" ]
[ "郭旺(1979-),男,安徽淮南人,博士,研究员,2017年于中国人民大学获得博士学位,主要从事激光透明陶瓷、荧光陶瓷、LED/LD封装、稀土氧化物红外窗口陶瓷的研究。 E-mail: guowang@fjirsm.ac.cn" ]
纸质出版日期:2022-12-05,
收稿日期:2022-06-21,
修回日期:2022-07-08,
扫 描 看 全 文
周泽华,黄集权,陈剑等.Ga3+、Sc3+掺杂LuAG∶Ce3+透明陶瓷的荧光性能[J].发光学报,2022,43(12):1928-1937.
ZHOU Ze-hua,HUANG Ji-quan,CHEN Jian,et al.Analysis of Ga3+/Sc3+ Substitution on Luminescence Property of LuAG∶Ce3+ Transparent Ceramics[J].Chinese Journal of Luminescence,2022,43(12):1928-1937.
周泽华,黄集权,陈剑等.Ga3+、Sc3+掺杂LuAG∶Ce3+透明陶瓷的荧光性能[J].发光学报,2022,43(12):1928-1937. DOI: 10.37188/CJL.20220248.
ZHOU Ze-hua,HUANG Ji-quan,CHEN Jian,et al.Analysis of Ga3+/Sc3+ Substitution on Luminescence Property of LuAG∶Ce3+ Transparent Ceramics[J].Chinese Journal of Luminescence,2022,43(12):1928-1937. DOI: 10.37188/CJL.20220248.
LuAG∶Ce
3+
是一种高效稳定的商业化绿色荧光转换材料。我们采用真空烧结方法制备了一系列掺杂Ga
3+
/Sc
3+
的LuAG∶Ce
3+
透明陶瓷样品,并研究了掺杂离子及掺杂浓度对其晶体结构、荧光性能及热稳定性能的影响。在450 nm蓝光激发下,Ga
3+
和Sc
3+
的掺杂均使LuAG∶Ce
3+
的发射谱发生蓝移。其中,Ga
3+
离子具有更好的蓝移效果,在掺杂浓度从0%提升至20%时,发射光谱从536 nm蓝移至506 nm。与此同时,两种离子掺杂均降低了绿光陶瓷的热稳定性能。但通过变温发射谱及量子产率表征发现,Ga
3+
离子对陶瓷热性能的影响比Sc
3+
离子的小。将两个系列的陶瓷样品封装在3 W的蓝光LED芯片上,获得了具有不同光色的绿光光源。其中,Ga
3+
系列陶瓷展现出了更优异的光色可调性,并且维持着更高的光效。综上,我们认为Ga
3+
离子掺杂的LuAG∶Ce
3+
陶瓷是一种具有较大潜力的绿色荧光转换材料。
LuAG∶Ce
3+
is an efficient and stable commercial green phosphor-converted material. Two series of Lu
3
Al
5-
x
M
x
O
12
∶Ce
3+
transparent ceramics(TCs) doped with Ga
3+
/Sc
3+
ions were fabricated by vacuum sintering. The effects of doping ions and their concentration on crystal structure, fluorescence properties, and thermal stability were investigated. Both Ga
3+
and Sc
3+
doped LuAG∶Ce
3+
samples exhibit a blue-shift under 450 nm blue light excitation. Significantly, Ga
3+
doped samples have more effective spectral modulation, and the emission spectrum shifts from 536 nm to 506 nm when Ga
3+
concentration increases from 0% to 20%. Meanwhile, it is found from temperature-dependence spectrum and quantum yield characterization that Ga
3+
doped ions have less impact on thermal stability of LuAG∶Ce
3+
ceramics. By encapsulating the ceramic samples on 3 W blue LED chips, green light sources with various spectra were obtained. Among them, Ga
3+
doped LuAG∶Ce
3+
samples show better color tunability and maintain higher light efficiency. In summary, Ga
3+
doped LuAG∶Ce
3+
ceramic is a promising green phosphor-converted material.
LuAG透明陶瓷绿色荧光转换材料变温发射谱
LuAGtransparent ceramicsgreen color convertertemperature-dependence spectrum
SCHUBERT E F, KIM J K. Solid-state light sources getting smart [J]. Science, 2005, 308(5726): 1274-1278.
PUST P, SCHMIDT P J, SCHNICK W. A revolution in lighting [J]. Nat. Mater., 2015, 14(5): 454-458.
KIM Y H, VISWANATH N S M, UNITHRATTIL S, et al. Review—phosphor plates for high-power LED applications: challenges and opportunities toward perfect lighting [J]. ECS J. Solid State Sci. Technol., 2017, 7(1): R3134-R3147.
RAUKAS M, KELSO J, ZHENG Y, et al. Ceramic phosphors for light conversion in LEDs [J]. ECS J. Solid State Sci. Technol., 2013, 2(2): R3168-R3176.
LI H L, LIU X J, HUANG L P. Fabrication of transparent cerium-doped lutetium aluminum garnet (LuAG∶Ce) ceramics by a solid-state reaction method [J]. J. Am. Ceram. Soc., 2005, 88(11): 3226-3228.
NAKAMURA S. The roles of structural imperfections in InGaN-based blue light-emitting diodes and laser diodes [J]. Science, 1998, 281(5379): 956-961.
PATTISON M, HANSEN M, BARDSLEY N, et al. 2019 lighting R&D opportunities [R]. Energy Efficiency and Renewable Energy, 2020.
CHEN D Q, XIANG W D, LIANG X J, et al. Advances in transparent glass‐ceramic phosphors for white light-emitting diodes—a review [J]. J. Eur. Ceram. Soc., 2015, 35(3): 859-869.
李江, 李万圆, 刘欣, 等. 固态照明/显示用荧光陶瓷研究进展 [J]. 发光学报, 2021, 42(5): 580-604. doi: 10.37188/CJL.20200402http://dx.doi.org/10.37188/CJL.20200402
LI J, LI W Y, LIU X, et al. Research progress on phosphor ceramics for solid-state lighting/display [J]. Chin. J. Lumin., 2021, 42(5): 580-604. (in Chinese). doi: 10.37188/CJL.20200402http://dx.doi.org/10.37188/CJL.20200402
李万元, 张琳, 毛建, 等. 高亮度β-sialon∶Eu2+绿色荧光粉的合成及其在高色域白光LED上的应用 [J]. 功能材料, 2018, 49(1): 1167-1172.
LI W Y, ZHANG L, MAO J, et al. Synthesis of the highly efficient β-sialon∶Eu2+ green phosphor and its application in wide-color gamut white LEDs [J]. J. Funct. Mater., 2018, 49(1): 1167-1172. (in Chinese)
DING H, LIU Z H, HU P, et al. High efficiency green-emitting LuAG∶Ce ceramic phosphors for laser diode lighting [J]. Adv. Opt. Mater., 2021, 9(8): 2002141-1-8.
ZHANG Q, ZHENG R L, DING J Y, et al. Excellent luminous efficiency and high thermal stability of glass-in-LuAG ceramic for laser-diode-pumped green-emitting phosphor [J]. Opt. Lett., 2018, 43(15): 3566-3569.
MA Y L, ZHANG L, ZHOU T Y, et al. High quantum efficiency Ce∶(Lu, Y)3(Al, Sc)2Al3O12 transparent ceramics with excellent thermal stability for high-power white LEDs/LDs [J]. J. Mater. Chem. C, 2020, 8(46): 16427-16435.
KHANIN V, VENEVTSEV I, CHERNENKO K, et al. Exciton interaction with Ce3+ and Ce4+ ions in (LuGd)3(Ga, Al)5O12 ceramics [J]. J. Lumin., 2021, 237: 118150-1-6.
KHANIN V, VENEVTSEV I, CHERNENKO K, et al. Variation of the conduction band edge of (Lu, Gd)3(Ga, Al)5O12∶Ce garnets studied by thermally stimulated luminescence [J]. J. Lumin., 2019, 211: 48-53.
MORI M, XU J, OKADA G, et al. Comparative study of optical and scintillation properties of Ce∶YAGG, Ce∶GAGG and Ce∶LuAGG transparent ceramics [J]. J. Ceram. Soc. Japan, 2016, 124(5): 569-573.
BONNET L, BOULESTEIX R, MAÎTRE A, et al. Manufacturing issues and optical properties of rare-earth (Y, Lu, Sc, Nd) aluminate garnets composite transparent ceramics [J]. Opt. Mater., 2015, 50: 2-10.
XIA Z G, MEIJERINK A. Ce3+-doped garnet phosphors: composition modification, luminescence properties and applications [J]. Chem. Soc. Rev., 2017, 46(1): 275-999. doi: 10.1039/c6cs00551ahttp://dx.doi.org/10.1039/c6cs00551a
CHEN X Q, QIN H M, ZHANG Y, et al. Fabrication of cerium-doped nonstoichiometric (Ce, Lu, Gd)3+δ(Ga, Al)5-δO12 transparent ceramics [J]. J. Rare Earths, 2015, 33(8): 863-866.
CHEN X P, LIU X, FENG Y G, et al. Microstructure evolution in two-step-sintering process toward transparent Ce∶(Y, Gd)3(Ga, Al)5O12 scintillation ceramics [J]. J. Alloys Compds., 2020, 846: 156377-1-16.
HUA H, FENG S W, OUYANG Z Y, et al. YAGG∶Ce transparent ceramics with high luminous efficiency for solid-state lighting application [J]. J. Adv. Ceram., 2019, 8(3): 389-398.
AHRENS L H. The use of ionization potentials Part 1. Ionic radii of the elements [J]. Geochim. Cosmochim. Acta, 1952, 2(3): 155-169.
WANG W, JIANG B X, FENG T, et al. Broadening emission band of Yb∶LuScO3 transparent ceramics for ultrashort pulse laser [J]. J. Am. Ceram. Soc., 2021, 104(11): 6064-6073.
DORENBOS P. 5d-level energies of Ce3+ and the crystalline environment. Ⅱ. Chloride, bromide, and iodide compounds [J]. Phys. Rev. B, 2000, 62(23): 15650-1-10. doi: 10.1103/physrevb.62.15650http://dx.doi.org/10.1103/physrevb.62.15650
FENG T, SHI J L, JIN X G, et al. Effect of Sc substitution for Al on the optical properties of transparent Ce∶YSAG ceramics [J]. J. Am. Ceram. Soc., 2008, 91(7): 2394-2397.
UEDA J, TANABE S, NAKANISHI T. Analysis of Ce3+ luminescence quenching in solid solutions between Y3Al5O12 and Y3Ga5O12 by temperature dependence of photoconductivity measurement [J]. J. Appl. Phys., 2011, 110(5): 053102-1-6.
LING J R, XU W T, YANG J, et al. The effect of Lu3+ doping upon YAG∶Ce phosphor ceramics for high-power white LEDs [J]. J. Eur. Ceram. Soc., 2021, 41(12): 5967-5976.
0
浏览量
225
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构