浏览全部资源
扫码关注微信
太原理工大学 物理与光电工程学院, 山西 太原 030024
[ "何庆叶(1993-),女,山西大同人,硕士,2022年于太原理工大学获得硕士学位,主要从事钙钛矿纳米激光器方面的研究。 E-mail: 1361221169@qq.com" ]
[ "李国辉(1984-),男,四川广元人,博士,副教授,硕士生导师,2011年于华东师范大学获得学士学位,主要从事微纳光子与光电子学领域(包括钙钛矿激光器、表面等离激元纳米器件、有机及钙钛矿光电探测器等)的研究。 E-mail: liguohui@tyut.edu.cn" ]
[ "崔艳霞(1984-),女,山西吕梁人,博士,教授,博士生导师,2011年于浙江大学获得博士学位,主要从事微纳光子与光电子学领域(包括表面等离激元纳米器件、有机及钙钛矿光电探测器及钙钛矿激光器等)的研究。 E-mail: yanxiacui@tyut.edu.cn" ]
纸质出版日期:2022-12-05,
收稿日期:2022-06-15,
修回日期:2022-06-30,
扫 描 看 全 文
何庆叶,李国辉,潘登等.表面等离激元金属‐绝缘体‐半导体波导激光器研究进展[J].发光学报,2022,43(12):1839-1854.
HE Qing-ye,LI Guo-hui,PAN Deng,et al.Research Progress of Surface Plasmon Polariton Metal-Insulator-Semiconductor Waveguide Lasers[J].Chinese Journal of Luminescence,2022,43(12):1839-1854.
何庆叶,李国辉,潘登等.表面等离激元金属‐绝缘体‐半导体波导激光器研究进展[J].发光学报,2022,43(12):1839-1854. DOI: 10.37188/CJL.20220238.
HE Qing-ye,LI Guo-hui,PAN Deng,et al.Research Progress of Surface Plasmon Polariton Metal-Insulator-Semiconductor Waveguide Lasers[J].Chinese Journal of Luminescence,2022,43(12):1839-1854. DOI: 10.37188/CJL.20220238.
纳米激光器在光通信、全息技术、生物医疗成像等领域有着广泛的应用前景。表面等离激元(Surface plasmon polariton, SPP)沿着金属表面传播,基于该特性可制成突破衍射极限的低阈值纳米激光器。它们不但具有小尺寸特征,同时还能激发Purcell效应,表现出更高的自发辐射效率。近年来,金属‐绝缘体‐半导体(MIS)波导结构的SPP激光器因具有超强的模式约束能力被大量报道。本文以基于MIS结构的SPP激光器为主题进行综述。首先,介绍了SPP激光器的工作原理,接着分别介绍了基于MIS波导结构的纳米片型和纳米线型SPP激光器的工作原理。然后,依据增益介质材料的不同,依次介绍了增益介质分别为Ⅱ‐Ⅵ半导体、Ⅲ‐Ⅴ半导体以及钙钛矿的SPP MIS波导激光器研究进展。最后,总结全文,并对基于MIS波导的SPP激光器未来的发展和挑战进行了展望。
Micro-lasers have wide application prospects in optical communication, holographic technology, biomedical imaging and other fields. Surface plasmon polariton(SPP) propagates along the metal surface, which can be used to fabricate low-threshold nanolasers that break the diffraction limit.. They not only have the characteristic of small size, but also can induce the Purcell effect, so that the spontaneous emission efficiency can be significantly enhanced. In recent years, SPP lasers based on metal-insulator-semiconductor(MIS) waveguide structures have attracted much attention because of their ability of extremely large mode constraint. In this paper, SPP lasers based on MIS waveguide structures will be reviewed. Firstly, the basic mechanism of SPP laser is introduced, and the working principles of nanoplatelet type and nanowire type SPP lasers based on MIS waveguides are introduced respectively. Then, according to different gain medium materials, this paper introduces the research progress of SPP MIS waveguide lasers whose gain media are Ⅱ-Ⅵ semiconductor, Ⅲ-Ⅴ semiconductor and perovskite respectively. Finally, the thesis is summarized, and the future development and challenges of SPP MIS waveguide lasers are prospected.
表面等离激元金属-绝缘体-半导体激光器纳米片纳米线
surface plasmon polaritonmetal-insulator-semiconductorlasernanoplateletnanowire
KIM J E, SONG M K, HAN M S, et al. A study on the application of laser cleaning process in shipbuilding industries using 100 W fiber laser [J]. J. Mech. Sci. Technol., 2021, 35(4): 1421-1427. doi: 10.1007/s12206-021-0113-3http://dx.doi.org/10.1007/s12206-021-0113-3
GUO L B, ZHANG D, SUN L X, et al. Development in the application of laser-induced breakdown spectroscopy in recent years: a review [J]. Front. Phys., 2021, 16(2): 22500-1-25.
姚峄林, 张锦秋, 杨培霞, 等. 激光辅助电沉积技术及其在制备功能材料方面的应用 [J]. 材料导报, 2022, 36(3): 20080209-1-9. doi: 10.11896/cldb.20080209http://dx.doi.org/10.11896/cldb.20080209
YAO Y Y, ZHANG J Q, YANG P X, et al. Laser-assisted electrodeposition technology and its application in the preparation of functional materials [J]. Mater. Rep., 2022, 36(3): 20080209-1-9. (in Chinese). doi: 10.11896/cldb.20080209http://dx.doi.org/10.11896/cldb.20080209
张滢滢, 郭毅, 沈烈. 激光扫描共聚焦显微技术在高分子科学研究中的应用 [J]. 高分子通报, 2022(1): 78-85.
ZHANG Y Y, GUO Y, SHEN L. Application of laser scanning confocal microscopy in the study of polymer science [J]. Polym. Bull., 2022(1): 78-85. (in Chinese)
KRYUKOV A I, TSARAPKIN G Y, ARZAMASOV S G, et al. The application of lasers in otorhinolaryngology [J]. Vestn Otorinolaringol., 2016, 81(6): 62-66.
LEUTHOLD J, HOESSBACHER C, MUEHLBRANDT S, et al. Plasmonic communications: light on a wire [J]. Opt. Photonics News, 2013, 24(5): 28-35.
MILLER D A B. Device requirements for optical interconnects to silicon chips [J]. Proc. IEEE, 2009, 97(7): 1166-1185.
CHO C, ANTRACK T, KROLL M, et al. Electrical pumping of perovskite diodes: toward stimulated emission [J]. Adv. Sci., 2021, 8(17): 2101663-1-9. doi: 10.1002/advs.202101663http://dx.doi.org/10.1002/advs.202101663
ZHANG M, BUSCAINO B, WANG C, et al. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator [J]. Nature, 2019, 568(7752): 373-377. doi: 10.1038/s41586-019-1008-7http://dx.doi.org/10.1038/s41586-019-1008-7
KELLEHER B, DILLANE M, VIKTOROV E A. Optical information processing using dual state quantum dot lasers: complexity through simplicity [J]. Light Sci. Appl., 2021, 10(1): 238-1-15.
ZHONG Y C, TANG B, FEI M, et al. All‐photonic miniature perovskite encoder with a terahertz bandwidth [J]. Laser Photonics Rev., 2020, 14(4): 1900398-1-7.
JEWELL J L, MCCALL S L, LEE Y H, et al. Optical computing and related microoptic devices [J]. Appl. Opt., 1990, 29(34): 5050-5053. doi: 10.1364/ao.29.005050http://dx.doi.org/10.1364/ao.29.005050
OZBAY E. Plasmonics: merging photonics and electronics at nanoscale dimensions [J]. Science, 2006, 311(5758): 189-193. doi: 10.1126/science.1114849http://dx.doi.org/10.1126/science.1114849
ZAYATS A V, SMOLYANINOV I I, MARADUDIN A A. Nano-optics of surface plasmon polaritons [J]. Phys. Rep., 2005, 408(3): 131-314.
童廉明, 徐红星. 表面等离激元——机理、应用与展望 [J]. 物理, 2012, 41(9): 582-588.
TONG L M, XU H X. Surface plasmons—mechanisms, applications and perspectives [J]. Physics, 2012, 41(9): 582-588. (in Chinese)
顾本源. 表面等离子体亚波长光学原理和新颖效应 [J]. 物理, 2007, 36(4): 280-287. doi: 10.3321/j.issn:0379-4148.2007.04.004http://dx.doi.org/10.3321/j.issn:0379-4148.2007.04.004
GU B Y. Surface plasmon subwavelength optics: principles and novel effects [J]. Physics, 2007, 36(4): 280-287. (in Chinese). doi: 10.3321/j.issn:0379-4148.2007.04.004http://dx.doi.org/10.3321/j.issn:0379-4148.2007.04.004
陈泳屹, 佟存柱, 秦莉, 等. 表面等离子体激元纳米激光器技术及应用研究进展 [J]. 中国光学, 2012, 5(5): 453-463. doi: 10.3788/CO.20120505.0453http://dx.doi.org/10.3788/CO.20120505.0453
CHEN Y Y, TONG C Z, QIN L, et al. Progress in surface plasmon polariton nano-laser technologies and applications [J]. Chin. Opt., 2012, 5(5): 453-463. (in Chinese). doi: 10.3788/CO.20120505.0453http://dx.doi.org/10.3788/CO.20120505.0453
CHEN S T, ZHANG C, LEE J, et al. High-Q, low-threshold monolithic perovskite thin-film vertical-cavity lasers [J]. Adv. Mater., 2017, 29(16): 1604781-1-8. doi: 10.1002/adma.201604781http://dx.doi.org/10.1002/adma.201604781
HILL M T, MARELL M, LEONG E S P, et al. Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides [J]. Opt. Express, 2009, 17(13): 11107-11112.
OULTON R F, SORGER V J, ZENTGRAF T, et al. Plasmon lasers at deep subwavelength scale [J]. Nature, 2009, 461(7264): 629-632.
YU H C, REN K K, WU Q, et al. Organic-inorganic perovskite plasmonic nanowire lasers with a low threshold and a good thermal stability [J]. Nanoscale, 2016, 8(47): 19536-19540.
智婷, 陶涛, 刘斌, 等. 表面等离激元半导体纳米激光器 [J]. 中国激光, 2020, 47(7): 0701010-1-17. doi: 10.3788/cjl202047.0701010http://dx.doi.org/10.3788/cjl202047.0701010
ZHI T, TAO T, LIU B, et al. Surface plasmon semiconductor nanolaser [J]. Chin. J. Lasers, 2020, 47(7): 0701010-1-17. (in Chinese). doi: 10.3788/cjl202047.0701010http://dx.doi.org/10.3788/cjl202047.0701010
SIDIROPOULOS T P H, RÖDER R, GEBURT S, et al. Ultrafast plasmonic nanowire lasers near the surface plasmon frequency [J]. Nat. Phys., 2014, 10(11): 870-876.
DING K, NING C Z. Metallic subwavelength-cavity semiconductor nanolasers [J]. Light Sci. Appl., 2012, 1(7): e20-1-8.
ZHOU W, DRIDI M, SUH J Y, et al. Lasing action in strongly coupled plasmonic nanocavity arrays [J]. Nat. Nanotechnol., 2013, 8(7): 506-511.
CHOU Y H, CHOU B T, CHIANG C K, et al. Ultrastrong mode confinement in ZnO surface plasmon nanolasers [J]. ACS Nano, 2015, 9(4): 3978-3983.
CHOU Y H, WU Y M, HONG K B, et al. High-operation-temperature plasmonic nanolasers on single-crystalline aluminum [J]. Nano Lett., 2016, 16(5): 3179-3186.
MA R M, OULTON R F, SORGER V J, et al. Room-temperature sub-diffraction-limited plasmon laser by total internal reflection [J]. Nat. Mater., 2011, 10(2): 110-113.
ZHANG Q, LI G Y, LIU X F, et al. A room temperature low-threshold ultraviolet plasmonic nanolaser [J]. Nat. Commun., 2014, 5(1): 4953-1-9.
HUANG C, SUN W Z, FAN Y B, et al. Formation of lead halide perovskite based plasmonic nanolasers and nanolaser arrays by tailoring the substrate [J]. ACS Nano, 2018, 12(4): 3865-3874. doi: 10.1021/acsnano.8b01206http://dx.doi.org/10.1021/acsnano.8b01206
EVANS T J S, SCHLAUS A, FU Y P, et al. Continuous-wave lasing in cesium lead bromide perovskite nanowires [J]. Adv. Opt. Mater., 2018, 6(2): 1700982-1-7. doi: 10.1002/adom.201700982http://dx.doi.org/10.1002/adom.201700982
SHANG Q Y, LI M L, ZHAO L Y, et al. Role of the exciton-polariton in a continuous-wave optically pumped CsPbBr3 perovskite laser [J]. Nano Lett., 2020, 20(9): 6636-6643. doi: 10.1021/acs.nanolett.0c02462http://dx.doi.org/10.1021/acs.nanolett.0c02462
GU Z Y, SONG Q H, XIAO S M. Nanowire waveguides and lasers: advances and opportunities in photonic circuits [J]. Front. Chem., 2020, 8: 613504-1-23.
GRAMOTNEV D K, BOZHEVOLNYI S I, et al. Plasmonics beyond the diffraction limit [J]. Nat. Photonics, 2010, 4(2): 83-91.
SAMUEL I D W, NAMDAS E B, TURNBULL G A. How to recognize lasing [J]. Nat. Photonics, 2009, 3(10): 546-549.
ZHELUDEV N I, PROSVIRNIN S L, PAPASIMAKIS N, et al. Lasing spaser [J]. Nat. Photonics, 2008, 2(6): 351-354.
DAI D X, HE S L. A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement [J]. Opt. Express, 2009, 17(19): 16646-16653.
OULTON R F, SORGER V J, GENOV D A, et al. A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation [J]. Nat. Photonics, 2008, 2(8): 496-500.
AVRUTSKY I, SOREF R, BUCHWALD W. Sub-wavelength plasmonic modes in a conductor-gap-dielectric system with a nanoscale gap [J]. Opt. Express, 2009, 18(1): 348-363.
VAHALA K J. Optical microcavities [J]. Nature, 2003, 424(6950): 839-846. doi: 10.1038/nature01939http://dx.doi.org/10.1038/nature01939
杨柳, 庄永勇, 刘阳, 等. 回音壁模式光学谐振腔研究进展 [J]. 大学物理, 2021, 40(5): 41-54.
YANG L, ZHUANG Y Y, LIU Y, et al. Progress of whispering gallery mode resonator [J]. Coll. Phys., 2021, 40(5): 41-54. (in Chinese)
HUANG Y Z, GUO W H, WANG Q M. Analysis and numerical simulation of eigenmode characteristics for semiconductor lasers with an equilateral triangle micro-resonator [J]. IEEE J. Quantum Electron., 2001, 37(1): 100-107.
CHANG H C, KIOSEOGLOU G, LEE E H, et al. Lasing modes in equilateral-triangular laser cavities [J]. Phys. Rev. A, 2000, 62(1): 013816-1-9.
YUAN Z Y, WU P C, CHEN Y C. Optical resonator enhanced photovoltaics and photocatalysis: fundamental and recent progress [J]. Laser Photonics Rev., 2021, 16(2): 2100202-1-26.
BERNARDINI F, FIORENTINI V, VANDERBILT D. Spontaneous polarization and piezoelectric constants of Ⅲ⁃Ⅴ nitrides [J]. Phys. Rev. B, 1997, 56(16): R10024-R10027.
YU E T, DANG X Z, ASBECK P M, et al. Spontaneous and piezoelectric polarization effects in Ⅲ⁃Ⅴ nitride heterostructures [J]. J. Vac. Sci. Technol. B, 1999, 17(4): 1742-1749.
MONROY E, GOGNEAU N, ENJALBERT F, et al. Molecular-beam epitaxial growth and characterization of quaternary Ⅲ⁃nitride compounds [J]. J. Appl. Phys., 2003, 94(5): 3121-3127.
张钰, 周欢萍. 有机-无机杂化钙钛矿材料的本征稳定性 [J]. 物理学报, 2019, 68(15): 158804-1-11. doi: 10.7498/aps.68.20190343http://dx.doi.org/10.7498/aps.68.20190343
ZHANG Y, ZHOU H P. Intrinsic stability of organic-inorganic hybrid perovskite [J]. Acta Phys. Sinica, 2019, 68(15): 158804-1-11. (in Chinese). doi: 10.7498/aps.68.20190343http://dx.doi.org/10.7498/aps.68.20190343
练惠旺, 康茹, 陈星中, 等. 全无机钙钛矿CsPbX3热稳定性研究进展 [J]. 发光学报, 2020, 41(8): 926-939. doi: 10.37188/fgxb20204108.0926http://dx.doi.org/10.37188/fgxb20204108.0926
LIAN H W, KANG R, CHEN X Z, et al. Research progress on thermal stability of all inorganic perovskite CsPbX3 [J]. Chin. J. Lumin., 2020, 41(8): 926-939. (in Chinese). doi: 10.37188/fgxb20204108.0926http://dx.doi.org/10.37188/fgxb20204108.0926
肖娟, 张浩力. 新型有机-无机杂化钙钛矿发光材料的研究进展 [J]. 物理化学学报, 2016, 32(8): 1894-1912. doi: 10.3866/PKU.WHXB201605034http://dx.doi.org/10.3866/PKU.WHXB201605034
XIAO J, ZHANG H L. Recent progress in organic⁃inorganic hybrid perovskite materials for luminescence applications [J]. Acta Phys.⁃Chim. Sinica, 2016, 32(8): 1894-1912. (in Chinese). doi: 10.3866/PKU.WHXB201605034http://dx.doi.org/10.3866/PKU.WHXB201605034
CHOOPUN S, VISPUTE R D, NOCH W, et al. Oxygen pressure-tuned epitaxy and optoelectronic properties of laser-deposited ZnO films on sapphire [J]. Appl. Phys. Lett., 1999, 75(25): 3947-3949.
MA R M, DAI L, QIN G G. Enhancement-mode metal-semiconductor field-effect transistors based on single n-CdS nanowires [J]. Appl. Phys. Lett., 2007, 90(9): 093109-1-3.
MA R M, DAI L, HUO H B, et al. High-performance logic circuits constructed on single CdS nanowires [J]. Nano Lett., 2007, 7(11): 3300-3304.
ZHANG Q, SHANG Q Y, SHI J, et al. Wavelength tunable plasmonic lasers based on intrinsic self-absorption of gain material [J]. ACS Photonics, 2017, 4(11): 2789-2796.
ZHAO D, LIU W, ZHU G B, et al. Surface plasmons promoted single-mode polariton lasing in a subwavelength ZnO nanowire [J]. Nano Energy, 2020, 78: 105202.
LI H, LI J H, HONG K B, et al. Plasmonic nanolasers enhanced by hybrid graphene-insulator-metal structures [J]. Nano Lett., 2019, 19(8): 5017-5024.
LU Y J, KIM J, CHEN H Y, et al. Plasmonic nanolaser using epitaxially grown silver film [J]. Science, 2012, 337(6093): 450-453.
TAO T, ZHI T, LIU B, et al. Electron-beam-driven Ⅲ-nitride plasmonic nanolasers in the deep-UV and visible region [J]. Small, 2020, 16(1): 1906205-1-8.
车韬, 李国辉, 冀婷, 等. 有机-无机杂化钙钛矿光电子器件的钝化技术研究进展(续) [J]. 半导体技术, 2019, 44(11): 825-830.
CHE T, LI G H, JI T, et al. Research progress of passivation technology of organic-inorganic hybrid perovskite optoelectronic devices (continued) [J]. Semicond. Technol., 2019, 44(11): 825-830. (in Chinese)
韩悦, 李国辉, 梁强兵, 等. 全无机钙钛矿CsPbX3纳米晶的研究进展 [J]. 发光学报, 2020, 41(5): 542-556. doi: 10.3788/fgxb20204105.0542http://dx.doi.org/10.3788/fgxb20204105.0542
HAN Y, LI G H, LIANG Q B, et al. Advances of all-inorganic perovskite CsPbX3 nanocrystals [J]. Chin. J. Lumin., 2020, 41(5): 542-556. (in Chinese). doi: 10.3788/fgxb20204105.0542http://dx.doi.org/10.3788/fgxb20204105.0542
汪俊, 周奉献, 李骞, 等. 准二维铅基钙钛矿微纳激光器 [J]. 发光学报, 2022, 43(11):1645-1662.
WANG J, ZHOU F X, LI Q, et al. Quasi-2D lead halide perovskites for micro- and nanolasers [J]. Chin. J. Lumin., 2022, 43(11):1645-1662.(in Chinese)
皮慧慧, 李国辉, 周博林, 等. 高效率钙钛矿量子点发光二极管研究进展 [J]. 发光学报, 2021, 42(5): 650-667. doi: 10.37188/CJL.20200406http://dx.doi.org/10.37188/CJL.20200406
PI H H, LI G H, ZHOU B L, et al. Progress of high-efficiency perovskite quantum dot light-emitting diodes [J]. Chin. J. Lumin., 2021, 42(5): 650-667. (in Chinese). doi: 10.37188/CJL.20200406http://dx.doi.org/10.37188/CJL.20200406
KIM H, ZHAO L F, PRICE J S, et al. Hybrid perovskite light emitting diodes under intense electrical excitation [J]. Nat. Commun., 2018, 9(1): 4893-1-9. doi: 10.1038/s41467-018-07383-8http://dx.doi.org/10.1038/s41467-018-07383-8
VELDHUIS S A, BOIX P P, YANTARA N, et al. Perovskite materials for light-emitting diodes and lasers [J]. Adv. Mater., 2016, 28(32): 6804-6834. doi: 10.1002/adma.201600669http://dx.doi.org/10.1002/adma.201600669
YAKUNIN S, PROTESESCU L, KRIEG F, et al. Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites [J]. Nat. Commun., 2015, 6: 8056-1-8.
ZHU H M, FU Y P, MENG F, et al. Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors [J]. Nat. Mater., 2015, 14(6): 636-642. doi: 10.1038/nmat4271http://dx.doi.org/10.1038/nmat4271
ZIMMLER M A, BAO J M, CAPASSO F, et al. Laser action in nanowires: observation of the transition from amplified spontaneous emission to laser oscillation [J]. Appl. Phys. Lett., 2008, 93(5): 051101-1-3.
霍成学, 王子明, 李晓明, 等. 低维金属卤化物钙钛矿: 一种微腔激光材料 [J]. 中国激光, 2017, 44(7): 0703008-1-12.
HUO C X, WANG Z M, LI X M, et al. low-dimensional metal halide perovskites: a kind of microcavity laser materials [J]. Chin. J. Lasers, 2017, 44(7): 0703008-1-12. (in Chinese)
楼浩然, 叶志镇, 何海平. 铅卤钙钛矿的光稳定性研究进展 [J]. 物理学报, 2019, 68(15): 157102-1-13. doi: 10.7498/aps.68.20190324http://dx.doi.org/10.7498/aps.68.20190324
LOU H R, YE Z Z, HE H P. Recent advances in photo-stability of lead halide perovskites [J]. Acta Phys. Sinica, 2019, 68(15): 157102-1-13. (in Chinese). doi: 10.7498/aps.68.20190324http://dx.doi.org/10.7498/aps.68.20190324
LI G H, CHE T, JI X Q, et al. Record-low-threshold lasers based on atomically smooth triangular nanoplatelet perovskite [J]. Adv. Funct. Mater., 2019, 29(2): 1805553-1-7. doi: 10.1002/adfm.201805553http://dx.doi.org/10.1002/adfm.201805553
WANG J, JIA X H, GUAN Y L, et al. The electron–hole plasma contributes to both plasmonic and photonic lasing from CH3NH3PbBr3 nanowires at room temperature [J]. Laser Photonics Rev., 2021, 15(6): 2000512-1-6.
LU Y J, SHEN T L, PENG K N, et al. Upconversion plasmonic lasing from an organolead trihalide perovskite nanocrystal with low threshold [J]. ACS Photonics, 2020, 8(1): 335-342.
WU Z Y, CHEN J, MI Y, et al. All-inorganic CsPbBr3 nanowire based plasmonic lasers [J]. Adv. Opt. Mater., 2018, 6(22): 1800674-1-8. doi: 10.1002/adom.201800674http://dx.doi.org/10.1002/adom.201800674
YANG S, BAO W, LIU X Z, et al. Subwavelength-scale lasing perovskite with ultrahigh Purcell enhancement [J]. Matter, 2021, 4(12): 4042-4050.
GONG M G, JIANG D, TAO T, et al. Surface plasmon coupling regulated CsPbBr3 perovskite lasers in a metal-insulator-semiconductor structure [J]. RSC Adv., 2021, 11(59): 37218-37224.
FREIRE-FERNÁNDEZ F, CUERDA J, DASKALAKIS K S, et al. Magnetic on-off switching of a plasmonic laser [J]. Nat. Photonics, 2022, 16(1): 27-32.
HUANG Z T, YIN C W, HONG Y H, et al. Hybrid plasmonic surface lattice resonance perovskite lasers on silver nanoparticle arrays [J]. Adv. Opt. Mater., 2021, 9(17): 2100299-1-8.
CHOU Y H, HONG K B, CHANG C T, et al. Ultracompact pseudowedge plasmonic lasers and laser arrays [J]. Nano Lett., 2018, 18(2): 747-753.
0
浏览量
440
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构