浏览全部资源
扫码关注微信
1.中国科学院长春光学精密机械与物理研究所 发光学及应用国家重点实验室, 吉林 长春 130033
2.中国科学院大学, 北京 100049
[ "李文媛(1998-),女,内蒙古赤峰人,硕士研究生,2020年于内蒙古师范大学获得学士学位,主要从事二维材料光电性能方面的研究。 E-mail: liwenyuan20@mails.ucas.ac.cn" ]
[ "付喜宏(1980-),男,内蒙古巴彦淖尔人,博士,研究员,2008年于中国科学院长春光学精密机械与物理研究所获得博士学位,主要从事激光技术及应用方面的研究。 E-mail: fuxh@ciomp.ac.cn" ]
纸质出版日期:2022-12-05,
收稿日期:2022-06-13,
修回日期:2022-07-04,
扫 描 看 全 文
李文媛,付鑫鹏,姚聪等.基于回音壁模式光学微腔的低阈值激光器研究进展[J].发光学报,2022,43(12):1823-1838.
LI Wen-yuan,FU Xin-peng,YAO Cong,et al.Research Progress of Low Threshold Laser Based on Whispering Gallery Mode Microcavity[J].Chinese Journal of Luminescence,2022,43(12):1823-1838.
李文媛,付鑫鹏,姚聪等.基于回音壁模式光学微腔的低阈值激光器研究进展[J].发光学报,2022,43(12):1823-1838. DOI: 10.37188/CJL.20220236.
LI Wen-yuan,FU Xin-peng,YAO Cong,et al.Research Progress of Low Threshold Laser Based on Whispering Gallery Mode Microcavity[J].Chinese Journal of Luminescence,2022,43(12):1823-1838. DOI: 10.37188/CJL.20220236.
回音壁模式(WGM)微腔激光器作为一种微纳激光器件,可以将光约束在微纳量级的谐振腔内并保持稳定的行波传输模式。凭借其高品质因子和小模式体积的特性,WGM微腔激光器具有低阈值和窄线宽的优点,成为了国内外关注的一个热门研究领域。WGM微腔内具有极高的光能量密度,光与物质相互作用得到显著增强。近年来,研究人员将不同增益材料与形态各异的微腔结构相结合,大大促进了WGM微腔激光器领域的发展。本文在概述WGM微腔激光器的特性参数和耦合方式的基础上,介绍了包括液滴微腔、玻璃微腔、半导体材料微腔在内的几种典型WGM微腔激光器的研究成果,并对其性能参数进行了比较。阐述了器件在超灵敏传感、微波光子学和片上集成等诸多领域的应用,并展望了WGM微腔激光器的发展趋势。
Whispering gallery mode(WGM) microcavity laser is a micro/nano laser device which can confine light in micro/nano resonant cavity and maintain stable traveling wave transmission mode. With its high quality factor and small mode volume, WGM microcavity laser has the advantages of low threshold and narrow linewidth. It has become a hot research field at home and abroad. WGM microcavity has a very high optical energy density, and the interaction between light and material is significantly enhanced. In recent years, researchers have combined different gain materials with different microcavity structures, which has greatly promoted the development of WGM microcavity lasers. Based on the overview of the characteristic parameters and coupling mode of WGM microcavity lasers, this paper introduces the research results of several typical WGM microcavity lasers, including droplet microcavity, glass microcavity and semiconductor microcavity, and compares their performance parameters. The applications of the devices in ultra sensitive sensing, microwave photonics and on-chip integration are described, and the development trend of WGM microcavity lasers is prospected.
回音壁模式液滴微腔稀土掺杂玻璃材料微腔半导体材料微腔二维材料增益介质
whispering gallery modedroplet microcavityrare earth doped glass microcavitysemiconductor material microcavitytwo dimensional material gain medium
YANG J, GUO L J. Optical sensors based on active microcavities [J]. IEEE J. Sel. Top. Quantum Electron., 2006, 12(1): 143-147.
CHEN Y C, FAN X D. Biological lasers for biomedical applications [J]. Adv. Opt. Mater., 2019, 7(17): 1900377-1-14.
BARNES J A, GAGLIARDI G, LOOCK H P. Phase-shift cavity ring-down spectroscopy on a microsphere resonator by Rayleigh backscattering [J]. Phys. Rev. A, 2013, 87(5): 053843-1-5. doi: 10.1103/physreva.87.053843http://dx.doi.org/10.1103/physreva.87.053843
GUO C L, CHE K J, CAI Z P, et al. Ultralow-threshold cascaded Brillouin microlaser for tunable microwave generation [J]. Opt. Lett., 2015, 40(21): 4971-4974.
VAHALA K J. Optical microcavities [J]. Nature, 2003, 424(6950): 839-846. doi: 10.1038/nature01939http://dx.doi.org/10.1038/nature01939
ASHKIN A, DZIEDZIC J M. Observation of resonances in the radiation pressure on dielectric spheres [J]. Phys. Rev. Lett., 1977, 38(23): 1351-1354.
GARRETT C G B, KAISER W, BOND W L. Stimulated emission into optical whispering modes of spheres [J]. Phys. Rev., 1961, 124(6): 1807-1809.
NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films [J]. Science, 2004, 306(5696): 666-669. doi: 10.1126/science.1102896http://dx.doi.org/10.1126/science.1102896
CHHOWALLA M, SHIN H S, EDA G, et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets [J]. Nat. Chem., 2013, 5(4): 263-275.
ZHANG S, LIANG N N, SHI X Y, et al. Direction-adjustable single-mode lasing via self-assembly 3D-curved microcavities for gas sensing [J]. ACS Appl. Mater. Interfaces, 2021, 13(38): 45916-45923.
YE Y, WONG Z J, LU X F, et al. Monolayer excitonic laser [J]. Nat. Photonics, 2015, 9(11): 733-737.
SALEHZADEH O, DJAVID M, TRAN N H, et al. Optically pumped two-dimensional MoS2 lasers operating at room-temperature [J]. Nano Lett., 2015, 15(8): 5302-5306.
HE L N, ÖZDEMIR S K, YANG L. Whispering gallery microcavity lasers [J]. Laser Photonics Rev., 2013, 7(1): 60-82.
李昂震, 王鹏飞. 基于玻璃材料的微球激光器的研究进展 [J]. 激光与光电子学进展, 2019, 56(17): 170616-1-10. doi: 10.3788/LOP56.170616http://dx.doi.org/10.3788/LOP56.170616
LI A Z, WANG P F. Research development of glass-based microsphere laser [J]. Laser Optoelectron. Prog., 2019, 56(17): 170616-1-10. (in Chinese). doi: 10.3788/LOP56.170616http://dx.doi.org/10.3788/LOP56.170616
李雨霏, 晏长岭, 史建伟. 半导体微盘激光器特性及研究进展 [J]. 半导体技术, 2016, 41(5): 321-328, 370.
LI Y F, YAN C L, SHI J W. Characteristics and research progress of semiconductor microdisk lasers [J]. Semicond. Technol., 2016, 41(5): 321-328, 370.
LORD RAYLEIGH O M F R S. CXII. The problem of the whispering gallery [J]. Lond. Edinburgh Dublin Philos. Mag. J. Sci., 1910, 20(120): 1001-1004.
YANG S C, WANG Y, SUN H D. Advances and prospects for whispering gallery mode microcavities [J]. Adv. Opt. Mater., 2015, 3(9): 1136-1162.
GIORGIN A, AVINO S, MALARA P, et al. Liquid droplet microresonators [J]. Sensors, 2019, 51(3): 473-1-20.
TOROPOV N, CABELLO G, SERRANO M P, et al. Review of biosensing with whispering-gallery mode lasers [J]. Light. Sci. Appl., 2021, 10(1): 42-1-19.
CHIASERA A, DUMEIGE Y, FÉRON P, et al. Spherical whispering-gallery-mode microresonators [J]. Laser Photonics Rev., 2010, 4(3): 457-482.
PURCELL E M. Spontaneous emission probabilities at radio frequencies [M]. BURSTEIN E, WEISBUCH C. Confined Electrons and Photons: New Physics and Applications. Boston: Springer, 1995: 839.
YAMAMOTO Y, MACHIDA S, BJÖRK G. Micro-cavity semiconductor lasers with controlled spontaneous emission [J]. Opt. Quant. Electron., 1992, 24(1): S215-S243.
BJORK G, YAMAMOTO Y. Analysis of semiconductor microcavity lasers using rate equations [J]. IEEE J. Quant. Electron., 1991, 27(11): 2386-2396.
ILCHENKO V S, YAO X S, MALEKI L. Pigtailing the high-Q microsphere cavity: a simple fiber coupler for optical whispering-gallery modes [J]. Opt. Lett., 1999, 24(11): 723-725.
CHIN M K, HO S T. Design and modeling of waveguide-coupled single-mode microring resonators [J]. J. Lightw. Technol., 1998, 16(8): 1433-1446.
LITTLE B E, LAINE J P, LIM D R, et al. Pedestal antiresonant reflecting waveguides for robust coupling to microsphere resonators and for microphotonic circuits [J]. Opt. Lett., 2000, 25(1): 73-75.
KNIGHT J C, CHEUNG G, JACQUES F, et al. Phase-matched excitation of whispering-gallery-mode resonances by a fiber taper [J]. Opt. Lett., 1997, 22(15): 1129-1131.
CAI M, PAINTER O, VAHALA K J. Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system [J]. Phys. Rev. Lett., 2000, 85(1): 74-77.
TZENG H M, WALL K F, LONG M B, et al. Laser emission from individual droplets at wavelengths corresponding to morphology-dependent resonances [J]. Opt. Lett., 1984, 9(11): 499-501.
QIAN S H, SNOW J B, TZENG H M, et al. Lasing droplets: highlighting the liquid-air interface by laser emission [J]. Science, 1986, 231(4737): 486-488.
LEE W, SUN Y Z, LI H, et al. A quasi-droplet optofluidic ring resonator laser using a micro-bubble [J]. Appl. Phys. Lett., 2011, 99(9): 091102-1-3. doi: 10.1063/1.3629814http://dx.doi.org/10.1063/1.3629814
HELBO B, KRISTENSEN A, MENON A. A micro-cavity fluidic dye laser[J]. J. Micromech. Microeng., 2003, 13(2): 307-311.
KIRAZ A, CHEN Q S, FAN X D. Optofluidic lasers with aqueous quantum dots [J]. ACS Photonics, 2015, 2(6): 707-713.
GARDNER K, AGHAJAMALI M, VAGIN S, et al. Ultrabright fluorescent and lasing microspheres from a conjugated polymer [J]. Adv. Funct. Mater., 2018, 28(33): 1802759-1-6.
TANG S J, LIU Z H, QIAN Y J, et al. A tunable optofluidic microlaser in a photostable conjugated polymer [J]. Adv. Mater., 2018, 30(50): 1804556-1-7.
ZHOU H, FENG G Y, YAO K, et al. Fiber-based tunable microcavity fluidic dye laser [J]. Opt. Lett., 2013, 38(18): 3604-3607.
VAN NGUYEN T, MAI H H, VAN NGUYEN T, et al. Egg white based biological microlasers [J]. J. Phys. D Appl. Phys., 2020, 53(44): 445104-1-6.
BRAGINSKY V B, GORODETSKY M L, ILCHENKO V S. Quality-factor and nonlinear properties of optical whispering-gallery modes [J]. Phys. Lett. A, 1989, 137(7-8): 393-397.
ZHANG C C, COCKING A, FREEMAN E, et al. On-chip glass microspherical shell whispering gallery mode resonators [J]. Sci. Rep., 2017, 7(1): 14965-1-11.
YANG L, VAHALA K J. Gain functionalization of silica microresonators [J]. Opt. Lett., 2003, 28(8): 592-594.
SNEE P T, CHAN Y, NOCERA D G, et al. Whispering-gallery-mode lasing from a semiconductor nanocrystal/microsphere resonator composite [J]. Adv. Mater., 2005, 17(9): 1131-1136.
LACEY S, WHITE I M, SUN Y Z, et al. Versatile opto-fluidic ring resonator lasers with ultra-low threshold [J]. Opt. Express, 2007, 15(23): 15523-15530.
赵皎印, 索浩, 李磊朋, 等. 荧光热增强型稀土掺杂上转换发光材料研究进展 [J]. 发光学报, 2021, 42(11): 1673-1685. doi: 10.37188/CJL.20210265http://dx.doi.org/10.37188/CJL.20210265
ZHAO J X, SUO H, LI L P, et al. Recent advances in rare-earth doped upconverison materials with thermally-enhanced emissions [J]. Chin. J. Lumin., 2021, 42(11): 1673-1685. (in Chinese). doi: 10.37188/CJL.20210265http://dx.doi.org/10.37188/CJL.20210265
刘荣辉, 刘元红, 陈观通. 稀土发光材料亟需技术和应用双驱协同创新 [J]. 发光学报, 2020, 41(5): 502-506.
LIU R H, LIU Y H, CHEN G T. Rare earth luminescent material urgently need dual-drive collaborative innovation in technology and application [J]. Chin. J. Lumin., 2020, 41(5): 502-506.
陈畅, 张琦, 王大校, 等. 连续可调宽光谱荧光玻璃的制备及性能 [J]. 发光学报, 2021, 42(9): 1412-1418. doi: 10.37188/CJL.20210136http://dx.doi.org/10.37188/CJL.20210136
CHEN C, ZHANG Q, WANG D X, et al. Preparation and performance of continuous tunable broadband fluorescent glass [J]. Chin. J. Lumin., 2021, 42(9): 1412-1418. (in Chinese). doi: 10.37188/CJL.20210136http://dx.doi.org/10.37188/CJL.20210136
丁海珍, 吴越豪, 王训四. 自由空间泵浦玻璃微球的光学特性 [J]. 发光学报, 2021, 42(7): 1007-1013. doi: 10.37188/CJL.20210109http://dx.doi.org/10.37188/CJL.20210109
DING H Z, WU Y H, WANG X S. Optical characterization of free-space coupled microsphere resonators [J]. Chin. J. Lumin., 2021, 42(7): 1007-1013. (in Chinese). doi: 10.37188/CJL.20210109http://dx.doi.org/10.37188/CJL.20210109
SANDOGHDAR V, TREUSSART F, HARE J, et al. Very low threshold whispering-gallery-mode microsphere laser [J]. Phys. Rev. A, 1996, 54(3): R1777-R1780. doi: 10.1103/physreva.54.r1777http://dx.doi.org/10.1103/physreva.54.r1777
YANG L, ARMANI D K, VAHALA K J. Fiber-coupled erbium microlasers on a chip [J]. Appl. Phys. Lett., 2003, 83(5): 825-826.
OSTBY E P, YANG L, VAHALA K J. Ultralow-threshold Yb3+∶SiO2 glass laser fabricated by the sol-gel process [J]. Opt. Lett., 2007, 32(18): 2650-2652.
LI A Z, ZHANG J Q, ZHANG M, et al. Effect of Tm3+ concentration on the emission wavelength shift in Tm3+-doped silica microsphere lasers [J]. Opt. Lett., 2018, 43(18): 4325-4328.
CHEN S Y, SUN T, GRATTAN K T V, et al. Characteristics of Er and Er-Yb-Cr doped phosphate microsphere fibre lasers [J]. Opt. Commun., 2009, 282(18): 3765-3769.
DONG C H, XIAO Y F, HAN Z F, et al. Low-threshold microlaser in Er ∶Yb phosphate glass coated microsphere [J]. IEEE Photonics Technol. Lett., 2008, 20(5): 342-344.
LI M Q, GAN J L, ZHANG Z S, et al. Single mode compound microsphere laser [J]. Opt. Commun., 2018, 420: 1-5.
LI A Z, LI W H, ZHANG M, et al. Tm3+-Ho3+ codoped tellurite glass microsphere laser in the 1.47 μm wavelength region [J]. Opt. Lett., 2019, 44(3): 511-513.
QIN J J, HUANG Y T, LIAO T D, et al. 1.9 μm laser and visible light emissions in Er3+/Tm3+ co-doped tellurite glass microspheres pumped by a broadband amplified spontaneous emission source [J]. J. Opt., 2019, 21(3): 035401-1-6.
MIURA K, TANAKA K, HIRAO K. Laser oscillation of a Nd3+-doped fluoride glass microsphere [J]. J. Mater. Sci. Lett., 1996, 15(21): 1854-1857.
JACKSON S D. Towards high-power mid-infrared emission from a fibre laser [J]. Nat. Photonics, 2012, 6(7): 423-431. doi: 10.1038/nphoton.2012.149http://dx.doi.org/10.1038/nphoton.2012.149
DENG Y, JAIN R K, HOSSEIN-ZADEH M. Demonstration of a CW room temperature mid-IR microlaser [J]. Opt. Lett., 2014, 39(15): 4458-4461.
LIU S J, ZHU X S, ZHU G W, et al. Graphene Q-switched Ho3+-doped ZBLAN fiber laser at 1 190 nm [J]. Opt. Lett., 2015, 40(2): 147-150.
ZHAO H Y, LI A Z, YI Y T, et al. A Tm3+-doped ZrF4-BaF2-YF3-AlF3 glass microsphere laser in the 2.0 μm wavelength region [J]. J. Lumin., 2019, 212: 207-211.
GUO Y Y, GAO G J, LI M, et al. Er3+-doped fluoro-tellurite glass: a new choice for 2.7 μm lasers [J]. Mater. Lett., 2012, 80: 56-58.
WANG X, ZHAO H Y, LI A Z, et al. Near-infrared luminescence and single-mode laser emission from Nd3+ doped compound glass and glass microsphere [J]. Front. Mater., 2019, 6: 237-1-6. doi: 10.3389/fmats.2019.00237http://dx.doi.org/10.3389/fmats.2019.00237
RIGHINI G C, DUMEIGE Y, FÉRON P, et al. Whispering gallery mode microresonators: fundamentals and applications [J]. Riv. Nuovo Cim., 2011, 34(7): 435-488.
MCCALL S L, LEVI A F J, SLUSHER R E, et al. Whispering-gallery mode microdisk lasers [J]. Appl. Phys. Lett., 1992, 60(3): 289-291.
HABERER E D, SHARMA R, MEIER C, et al. Free-standing, optically pumped, GaN/InGaN microdisk lasers fabricated by photoelectrochemical etching [J]. Appl. Phys. Lett., 2004, 85(22): 5179-5181.
TAMBOLI A C, HABERER E D, SHARMA R, et al. Room-temperature continuous-wave lasing in GaN/InGaN microdisks [J]. Nat. Photonics, 2007, 1(1): 61-64.
MOISEEV E I, MAXIMOV M V, NADTOCHIY A M, et al. Room temperature lasing in injection microdisks with InGaAsN/GaAs quantum well active region [J]. J. Phys. Conf. Ser., 2018, 1124(8): 081048-1-4.
ZI H, FU W Y, TABATABA-VAKILI F, et al. Whispering-gallery mode InGaN microdisks on GaN substrates [J]. Opt. Express, 2021, 29(14): 21280-21289.
MICHLER P, KIRAZ A, ZHANG L D, et al. Laser emission from quantum dots in microdisk structures [J]. Appl. Phys. Lett., 2000, 77(2): 184-186.
JAFFRENNOU P, CLAUDON J, BAZIN M, et al. Whispering gallery mode lasing in high quality GaAs/AlAs pillar microcavities [J]. Appl. Phys. Lett., 2010, 96(7): 071103-1-3.
LEBEDEV D V, VLASOV A S, KULAGINA M M, et al. Low threshold lasing in InP/GaInP quantum dot microdisks [J]. Semiconductors, 2018, 52(14): 1894-1897.
MAO M H, CHIEN H C, HONG J Z, et al. Room-temperature low-threshold current-injection InGaAs quantum-dot microdisk lasers with single-mode emission [J]. Opt. Express, 2011, 19(15): 14145-14151.
MUNSCH M, CLAUDON J, MALIK N S, et al. Room temperature, continuous wave lasing in microcylinder and microring quantum dot laser diodes [J]. Appl. Phys. Lett., 2012, 100(3): 151106-1-4.
NOVIKOV A S, MOISEEV E I, KRYZHANOVSKAYA N V, et al. Study of p-type contact topography influence on characteristics of microdisk and microring lasers [J]. J. Phys. Conf. Ser., 2018, 1124(4): 041012-1-5.
LIN L Y, XUE Y, LI J, et al. Ultra-low threshold optically pumped single mode InP micro-lasers grown on SOI [C]. Proceedings of the 2021 27th International Semiconductor Laser Conference, Potsdam, Germany, 2021: 1-2.
SUTHERLAND B R, HOOGLAND S, ADACHI S S, et al. Perovskite thin films via atomic layer deposition [J]. Adv. Mater., 2015, 27(1): 53-58.
XING J, LIU X F, ZHANG Q, et al. Vapor phase synthesis of organometal halide perovskite nanowires for tunable room-temperature nanolasers [J]. Nano. Lett., 2015, 15(7): 4571-4577.
XING G C, MATHEWS N, LIM S S, et al. Low-temperature solution-processed wavelength-tunable perovskites for lasing [J]. Nat. Mater., 2014, 13(5): 476-480. doi: 10.1038/nmat3911http://dx.doi.org/10.1038/nmat3911
ZHANG Q, HA S T, LIU X F, et al. Room-temperature near-infrared high-Q perovskite whispering-gallery planar nanolasers [J]. Nano Lett., 2014, 14(10): 5995-6001.
CEGIELSKI P J, NEUTZNER S, PORSCHATIS C, et al. Integrated perovskite lasers on a silicon nitride waveguide platform by cost-effective high throughput fabrication [J]. Opt. Express, 2017, 25(12): 13199-13206.
MABUCHI H, DOHERTY A C. Cavity quantum electrodynamics: coherence in context [J]. Science, 2002, 298(5597): 1372-1377.
ZHANG L, CHEN Z H. Progress on exciton polariton photonics [J]. Sci. Sinica Phys. Mech. As., 2021, 51(3): 030003-1-13.
刘晓泽, 张馨元, 张顺平, 等. 二维半导体微纳光腔中光与物质的耦合 [J]. 光学学报, 2021, 41(8): 0823003-1-20. doi: 10.3788/aos202141.0823003http://dx.doi.org/10.3788/aos202141.0823003
LIU X Z, ZHANG X Y, ZHANG S P, et al. Light-matter coupling of two-dimensional semiconductors in micro-nano optical cavities [J]. Acta Opt. Sinica, 2021, 41(8): 0823003-1-20. (in Chinese). doi: 10.3788/aos202141.0823003http://dx.doi.org/10.3788/aos202141.0823003
GRUNDMANN M, DIETRICH C P. Whispering gallery modes in deformed hexagonal resonators [J]. Phys. Status Solidi B, 2012, 249(5): 871-879.
KUDO H, SUZUKI R, TANABE T. Whispering gallery modes in hexagonal microcavities [J]. Phys. Rev. A, 2013, 88(2): 023807-1-7.
SOMEYA T, WERNER R, FORCHEL A, et al. Room temperature lasing at blue wavelengths in gallium nitride microcavities [J]. Science, 1999, 285(5435): 1905-1906.
GAO W L, SHU J, QIU C Y, et al. Excitation of plasmonic waves in graphene by guided-mode resonances [J]. ACS Nano, 2012, 6(9): 7806-7813.
RUPASINGHE C, RUKHLENKO I D, PREMARATNE M. Spaser made of graphene and carbon nanotubes [J]. ACS Nano, 2014, 8(3): 2431-2438.
KOPPENS F H L, CHANG D E, DE ABAJO F J G. Graphene plasmonics: a platform for strong light⁃matter interactions [J]. Nano Lett., 2011, 11(8): 3370-3377.
LAI Y Y, LAN Y P, LU T C. Strong light⁃matter interaction in ZnO microcavities [J]. Light Sci. Appl., 2013, 2(6): e76-1-6.
JIANG M M, LI J T, XU C X, et al. Graphene induced high-Q hybridized plasmonic whispering gallery mode microcavities [J]. Opt. Express, 2014, 22(20): 23836-23850.
LI J T, LIN Y, LU J F, et al. Single mode ZnO whispering-gallery submicron cavity and graphene improved lasing performance [J]. ACS Nano, 2015, 9(7): 6794-6800.
BAEK H, LEE C H, CHUNG K, et al. Epitaxial GaN microdisk lasers grown on graphene microdots [J]. Nano Lett., 2013, 13(6): 2782-2785.
ZHAO L Y, SHANG Q Y, GAO Y, et al. High-temperature continuous-wave pumped lasing from large-area monolayer semiconductors grown by chemical vapor deposition [J]. ACS Nano, 2018, 12(9): 9390-9396.
FU X P, FU X H, CHEN Y Y, et al. Optically pumped monolayer MoSe2 excitonic lasers from whispering gallery mode microcavities [J]. Phys. Chem. Lett., 2020, 11(2): 541-547.
JIANG X F, QAVI A J, HUANG S H, et al. Whispering-gallery sensors [J]. Matter, 2020, 3(2): 371-392.
MARTIN L L, LEON-LUIS S F, PEREZ-RODRÍGUEZ C, et al. High pressure tuning of whispering gallery mode resonances in a neodymium-doped glass microsphere [J]. J. Opt. Soc. Am. B, 2013, 30(12): 3254-3259.
SUN Y Z, FAN X D. Distinguishing DNA by analog-to-digital-like conversion by using optofluidic lasers [J]. Angew. Chem. Int. Ed., 2012, 51(5): 1236-1239.
COHEN D A, HOSSEIN-ZADEH M, LEVI A F J. Microphotonic modulator for microwave receiver [J]. Electron. Lett., 2001, 37(5): 300-301.
XIE Y W, CHOUDHARY A, LIU Y, et al. System-level performance of chip-based brillouin microwave photonic bandpass filters [J]. J. Lightw. Technol., 2019, 37(20): 5246-5258.
ZHANG M, WANG C, HU Y W, et al. Electronically programmable photonic molecule [J]. Nat. Photonics, 2019, 13(1): 36-40.
LIU Y A, YAN X S, WU J W, et al. On-chip erbium-doped lithium niobate microcavity laser [J]. Sci. China Phys. Mech. As., 2021, 64(3): 234262-1-6.
0
浏览量
549
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构