浏览全部资源
扫码关注微信
1.吉林建筑大学 材料科学与工程学院, 吉林 长春 130118
2.中国科学院长春应用化学研究所 稀土资源利用国家重点实验室, 吉林 长春 130022
[ "王浩(1999-),男,吉林辽源人,硕士研究生,2020年于吉林建筑大学获得学士学位,主要从事稀土配合物可控制备及其光功能性的研究。 E-mail: 13341427152@163.com" ]
[ "王红宇(1985-),男,吉林长春人,博士,讲师,硕士生导师,2014年于长春理工大学获得博士学位,主要从事稀土纳米材料的可控制备及其物性的研究。 E-mail: wanghongyu@jlju.edu.cn" ]
[ "周亮(1982-),男,江苏徐州人,博士,研究员,博士生导师,2011年于中国科学院长春应用化学研究所获得博士学位,主要从事有机光电子材料及器件研发设计、器件制备工艺优化及制备装备研发等。 E-mail: zhoul@ciac.ac.cn" ]
[ "邓瑞平(1980-),男,江西瑞金人,博士,副研究员,2007年于中国科学院长春应用化学研究所获得博士学位,主要从事稀土配合物发光材料、有机光电材料的研究。 E-mail: dengrp@ciac.ac.cn" ]
纸质出版日期:2022-10-05,
收稿日期:2022-05-31,
修回日期:2022-06-19,
移动端阅览
王浩,王红宇,何亮等.新型光功能稀土配合物研究及应用进展[J].发光学报,2022,43(10):1509-152310.37188/CJL.20220221.
WANG Hao,WANG Hong-yu,HE Liang,et al.Progress in Research and Application of New Optical Functional Rare Earth Complexes[J].Chinese Journal of Luminescence,2022,43(10):1509-152310.37188/CJL.20220221.
稀土配合物独特的光物理性质决定其在发光器件、荧光探针等领域具有重要应用前景,因而受到广泛关注。本文总结了光功能稀土配合物研究的相关研究进展,梳理了相关的稀土配合物的光物理性质和发光机理理论,重点总结了近年来稀土配合物在有机电致发光器件、荧光探针等领域的研究进展,并对其未来的应用和研究进行了展望。
The rare earth complexes have attracted wide attention and aroused intensive research due to their unique photophysical properties, which endow them important application prospects in the fields of light-emitting devices and fluorescent probes,
etc
. In this paper, the photophysical properties and luminescence mechanism of the rare earth complexes were sorted out, and the research progress of the photofunctional rare earth complexes in recent years was summarized, particularly in the fields of organic light-emitting diodes and fluorescent probes. Finally, the potential application and further research prospects of the rare earth complexes were proposed.
稀土配合物光物理性质光功能材料荧光探针发光器件
rare earth complexesphotophysical propertiesphotofunctional materialsfluorescent probeslight-emitting devices
BÜNZLI J C G, PIGUET C. Taking advantage of luminescent lanthanide ions [J]. Chem. Soc. Rev., 2005, 34(12): 1048-1077. doi: 10.1039/b406082mhttp://dx.doi.org/10.1039/b406082m
WEISSMAN S I. Intramolecular energy transfer the fluorescence of complexes of europium [J]. J. Chem. Phys., 1942, 10(4): 214-217. doi: 10.1063/1.1723709http://dx.doi.org/10.1063/1.1723709
LIU J J, JI G F, XIAO J N, et al. Ultrastable 1D europium complex for simultaneous and quantitative sensing of Cr (Ⅲ) and Cr (Ⅵ) ions in aqueous solution with high selectivity and sensitivity [J]. Inorg. Chem., 2017, 56(7): 4197-4205. doi: 10.1021/acs.inorgchem.7b00157http://dx.doi.org/10.1021/acs.inorgchem.7b00157
MARTINIĆ I, ELISEEVA S V, NGUYEN T N, et al. Near-infrared optical imaging of necrotic cells by photostable lanthanide-based metallacrowns [J]. J. Am. Chem. Soc., 2017, 139(25): 8388-8391. doi: 10.1021/jacs.7b01587http://dx.doi.org/10.1021/jacs.7b01587
METLIN M T, GORYACHII D O, AMINEV D F, et al. Bright Yb3+ complexes for efficient pure near-infrared OLEDs [J]. Dyes Pigm., 2021, 195: 109701-1-12. doi: 10.1016/j.dyepig.2021.109701http://dx.doi.org/10.1016/j.dyepig.2021.109701
GAVRILUTA A, FIX T, NONAT A, et al. Tuning the chemical properties of europium complexes as downshifting agents for copper indium gallium selenide solar cells [J]. J. Mater. Chem. A, 2017, 5(27): 14031-14040. doi: 10.1039/c7ta02892jhttp://dx.doi.org/10.1039/c7ta02892j
MOUDAM O, LAKBITA O. Potential end-use of a europium binary photoluminescent ink for anti-counterfeiting security documents [J]. ACS Omega, 2021, 6(44): 29659-29663. doi: 10.1021/acsomega.1c03949http://dx.doi.org/10.1021/acsomega.1c03949
RODRIGUES C V, JOHNSON K R, LOMBARDI V C, et al. Photocytotoxicity of thiophene- and bithiophene-dipicolinato luminescent lanthanide complexes [J]. J. Med. Chem., 2021, 64(11): 7724-7734. doi: 10.1021/acs.jmedchem.0c01805http://dx.doi.org/10.1021/acs.jmedchem.0c01805
PATRA D, KUMAR P, DASH T K, et al. Gadolinium(Ⅲ) coordinated theranostic polymer for proficient sequential targeting‑combinational chemotherapy and T1 weighted magnetic resonance imaging [J]. ACS Appl. Polym. Mater., 2022, 4(3): 1752-1763. doi: 10.1021/acsapm.1c01591http://dx.doi.org/10.1021/acsapm.1c01591
KANAZAWA K, KOMIYA Y, NAKAMURA K, et al. Red luminescence control of Eu(Ⅲ) complexes by utilizing the multi-colored electrochromism of Viologen derivatives [J]. Phys. Chem. Chem. Phys., 2017, 19(26): 16979-16988. doi: 10.1039/c6cp08528hhttp://dx.doi.org/10.1039/c6cp08528h
PARKER D, FRADGLEY J D, WONG K L. The design of responsive luminescent lanthanide probes and sensors [J]. Chem. Soc. Rev., 2021, 50(14): 8193-8213. doi: 10.1039/d1cs00310khttp://dx.doi.org/10.1039/d1cs00310k
MISRA V, MISHRA H. Photoinduced proton transfer coupled with energy transfer: mechanism of sensitized luminescence of terbium ion by salicylic acid doped in polymer [J]. J. Chem. Phys., 2008, 128(24): 244701-1-8. doi: 10.1063/1.2918284http://dx.doi.org/10.1063/1.2918284
ELISEEVA S V, BÜNZLI J C G. Lanthanide luminescence for functional materials and bio-sciences [J]. Chem. Soc. Rev., 2010, 39(1): 189-227. doi: 10.1039/b905604chttp://dx.doi.org/10.1039/b905604c
LATVA M, TAKALO H, MUKKALA V M, et al. Correlation between the lowest triplet state energy level of the ligand and lanthanide(Ⅲ) luminescence quantum yield [J]. J. Lumin., 1997, 75(2): 149-169. doi: 10.1016/s0022-2313(97)00113-0http://dx.doi.org/10.1016/s0022-2313(97)00113-0
MANZUR J, POBLETE C, MORALES J, et al. Enhancement of terbium(Ⅲ)-centered luminescence by tuning the triplet energy level of substituted pyridylamino-4-R-phenoxo tripodal ligands [J]. Inorg. Chem., 2020, 59(8): 5447-5455. doi: 10.1021/acs.inorgchem.0c00023http://dx.doi.org/10.1021/acs.inorgchem.0c00023
KTIAGAAWA Y, TSURUI M, HAESGAWA Y. Bright red emission with high color purity from Eu(Ⅲ) complexes with π-conjugated polycyclic aromatic ligands and their sensing applications [J]. RSC Adv., 2022, 12(2): 810-821. doi: 10.1039/d1ra08233ghttp://dx.doi.org/10.1039/d1ra08233g
MIKHALYOVA E A, YAKOVENKO A V, ZELLER M, et al. Crystal structures and intense luminescence of tris (3-(2’-pyridyl)-pyrazolyl) borate Tb3+ and Eu3+ complexes with carboxylate co-ligands [J]. Dalton Trans., 2017, 46(11): 3457-3469. doi: 10.1039/c6dt04757bhttp://dx.doi.org/10.1039/c6dt04757b
KUNKELY H, VOGLER A. Optical metal-to-ligand charge transfer in tris (pyrazine-2-carboxylato) cerium(Ⅲ): absorption and emission [J]. J. Photochem. Photobiol. A Chem., 2002, 151(1-3): 45-47. doi: 10.1016/s1010-6030(02)00171-5http://dx.doi.org/10.1016/s1010-6030(02)00171-5
ILICHEV V A, ROZHKOV A V, RUMYANTCEV R V, et al. LMCT facilitated room temperature phosphorescence and energy transfer in substituted thiophenolates of Gd and Yb [J]. Dalton Trans., 2017, 46(9): 3041-3050. doi: 10.1039/c6dt04519ghttp://dx.doi.org/10.1039/c6dt04519g
KITAGAWA Y, KUMAGAI M, FERREIRA DA ROSA P P, et al. Long-range LMCT coupling in EuIII coordination polymers for an effective molecular luminescent thermometer [J]. Chem. Eur. J., 2021, 27(1): 264-269. doi: 10.1002/chem.202002628http://dx.doi.org/10.1002/chem.202002628
DAVIES G M, POPE S J A, ADAMS H, et al. Structural and photophysical properties of coordination networks combining [Ru (bipy)(CN)4]2- anions and lanthanide(Ⅲ) cations: rates of photoinduced Ru-to-lanthanide energy transfer and sensitized near-infrared luminescence [J]. Inorg. Chem., 2005, 44(13): 4656-4665. doi: 10.1021/ic050512khttp://dx.doi.org/10.1021/ic050512k
PARKER D, DICKINS R S, PUSCHMANN H, et al. Being excited by lanthanide coordination complexes: aqua species, chirality, excited-state chemistry, and exchange dynamics [J]. Chem. Rev., 2002, 102(6): 1977-2010. doi: 10.1021/cr010452+http://dx.doi.org/10.1021/cr010452+
HENRIE D E, FELLOWS R L, CHOPPIN G R. Hypersensitivity in the electronic transitions of lanthanide and actinide complexes [J]. Coord. Chem. Rev., 1976, 18(2): 199-224. doi: 10.1016/s0010-8545(00)82044-5http://dx.doi.org/10.1016/s0010-8545(00)82044-5
MIYATA K, HASEGAWA Y, KURAMOCHI Y, et al. Characteristic structures and photophysical properties of nine-coordinate europium(Ⅲ) complexes with tandem-connected tridentate phosphane oxide ligands [J]. Eur. J. Inorg. Chem., 2009, 2009(32): 4777-4785. doi: 10.1002/ejic.200900598http://dx.doi.org/10.1002/ejic.200900598
MIYATA K, NAKAGAWA T, KAWAKAMI R, et al. Remarkable luminescence properties of lanthanide complexes with asymmetric dodecahedron structures [J]. Chem. Eur. J., 2011, 17(2): 521-528. doi: 10.1002/chem.201001993http://dx.doi.org/10.1002/chem.201001993
MIRANDA Y C, PEREIRA L L A L, BARBOSA J H P, et al. The role of the ligand-to-metal charge-transfer state in the dipivaloylmethanate-lanthanide intramolecular energy transfer process [J]. Eur. J. Inorg. Chem., 2015, 2015(18): 3019-3027. doi: 10.1002/ejic.201500263http://dx.doi.org/10.1002/ejic.201500263
FERREIRA DA ROSA P P, MIYAZAKI S, SAKAMOTO H, et al. Coordination geometrical effect on ligand-to-metal charge transfer-dependent energy transfer processes of luminescent Eu(Ⅲ) complexes [J]. J. Phys. Chem. A, 2021, 125(1): 209-217. doi: 10.1021/acs.jpca.0c09337http://dx.doi.org/10.1021/acs.jpca.0c09337
YANAGISAWA K. Study on Luminescent Lanthanide Complexes with Seven‑coordinate Structures [D]. Sapporo: Hokkaido University, 2018.
田梓峰. 掺三价稀土离子稀土(氟)磷酸盐发光性质的研究 [D]. 广州: 中山大学, 2009.
TIAN Z F. Luminescence Properties Investigation of Rare Earth(Fluoro-) Phosphates Doped with Trivalent Rare‑earth Ions [D]. Guangzhou: Sun Yat-sen University, 2009. (in Chinese)
HATANAKA M, YABUSHITA S. Theoretical study on the f-f transition intensities of lanthanide trihalide systems [J]. J. Phys. Chem. A, 2009, 113(45): 12615-12625. doi: 10.1021/jp9049507http://dx.doi.org/10.1021/jp9049507
YANAGISAWA K, KITAGAWA Y, NAKANISHI T, et al. Enhanced luminescence of asymmetrical seven-coordinate EuIII complexes including LMCT perturbation [J]. Eur. J. Inorg. Chem., 2017, 2017(32): 3843-3848. doi: 10.1002/ejic.201700815http://dx.doi.org/10.1002/ejic.201700815
YANAGISAWA K, KITAGAWA Y, NAKANISHI T, et al. A luminescent dinuclear EuIII/TbIII complex with LMCT band as a single-molecular thermosensor [J]. Chem. Eur. J., 2018, 24(8): 1956-1961. doi: 10.1002/chem.201705021http://dx.doi.org/10.1002/chem.201705021
WEI C, MA L, WEI H B, et al. Advances in luminescent lanthanide complexes and applications [J]. Sci. China Technol. Sci., 2018, 61(9): 1265-1285. doi: 10.1007/s11431-017-9212-7http://dx.doi.org/10.1007/s11431-017-9212-7
刘士浩. 超声喷涂薄膜及其在有机电致发光器件中的应用研究 [D]. 长春: 吉林大学, 2018. doi: 10.1016/j.orgel.2017.05.024http://dx.doi.org/10.1016/j.orgel.2017.05.024
LIU S H. Research on Ultrasonic Spray Coating Thin Films and Their Application in Organic Light‑emitting Devices [D]. Changchun: Jilin University, 2018. (in Chinese). doi: 10.1016/j.orgel.2017.05.024http://dx.doi.org/10.1016/j.orgel.2017.05.024
KIM H, HORWITZ J S, KUSHTO G P, et al. Transparent conducting Zr-doped In2O3 thin films for organic light-emitting diodes [J]. Appl. Phys. Lett., 2001, 78(8): 1050-1052. doi: 10.1063/1.1350595http://dx.doi.org/10.1063/1.1350595
BRÖMS P, BIRGERSSON J, JOHANSSON N, et al. Calcium electrodes in polymer LEDs [J]. Synth. Met., 1995, 74(2): 179-181. doi: 10.1016/0379-6779(95)03375-0http://dx.doi.org/10.1016/0379-6779(95)03375-0
DANNETUN P, FAHLMAN M, FAUQUET C, et al. Interface formation between poly (2, 5-diheptyl-p-phenylenevinylene) and calcium: implications for light-emitting diodes [J]. Synth. Met., 1994, 67(1-3): 133-136. doi: 10.1016/0379-6779(94)90026-4http://dx.doi.org/10.1016/0379-6779(94)90026-4
PUSHKAREV A P, BOCHKAREV M N. Organic electroluminescent materials and devices emitting in UV and NIR regions [J]. Russ. Chem. Rev., 2016, 85(12): 1338-1-31. doi: 10.1070/rcr4665http://dx.doi.org/10.1070/rcr4665
KAWAMURA Y, WADA Y, HASEGAWA Y, et al. Observation of neodymium electroluminescence [J]. Appl. Phys. Lett., 1999, 74(22): 3245-3247. doi: 10.1063/1.123357http://dx.doi.org/10.1063/1.123357
WEI H B, YU G, ZHAO Z F, et al. Constructing lanthanide[Nd(Ⅲ), Er(Ⅲ) and Yb(Ⅲ)] complexes using a tridentate N, N, O-ligand for near-infrared organic light-emitting diodes [J]. Dalton Trans., 2013, 42(24): 8951-8960. doi: 10.1039/c3dt50778ehttp://dx.doi.org/10.1039/c3dt50778e
AHMED Z, RedIFTIKHAR K., orange-red and near-infrared light emitting ternary lanthanide tris β-diketonate complexes with distorted C4v geometrical structures [J]. Dalton Trans., 2019, 48(15): 4973-4986.
O’RIORDAN A, VAN DEUN R, MAIRIAUX E, et al. Synthesis of a neodymium-quinolate complex for near-infrared electroluminescence applications [J]. Thin Solid Films, 2008, 516(15): 5098-5102. doi: 10.1016/j.tsf.2007.11.112http://dx.doi.org/10.1016/j.tsf.2007.11.112
CURRY R J, GILLIN W P. Infra-red and visible electroluminescence from ErQ based OLEDs [J]. Synth. Met., 2000, 111-112: 35-38. doi: 10.1016/s0379-6779(99)00433-6http://dx.doi.org/10.1016/s0379-6779(99)00433-6
NAGATA R, NAKANOTANI H, POTSCAVAGE JR W J, et al. Exploiting singlet fission in organic light-emitting diodes [J]. Adv. Mater., 2018, 30(33): 1801484-1-6. doi: 10.1002/adma.201801484http://dx.doi.org/10.1002/adma.201801484
SMITH M B, MICHL J. Singlet fission [J]. Chem. Rev., 2010, 110(11): 6891-6936. doi: 10.1021/cr1002613http://dx.doi.org/10.1021/cr1002613
KHREIS O M, GILLIN W P, SOMERTON M, et al. 980 nm electroluminescence from ytterbium tris (8-hydroxyquinoline) [J]. Org. Electron., 2001, 2(1): 45-51. doi: 10.1016/s1566-1199(00)00014-8http://dx.doi.org/10.1016/s1566-1199(00)00014-8
TCELYKH L O, VASHCHENKO A A, MEDVED’KO A V, et al. Ytterbium complexes with 2-(tosylamino)-benzylidene-N-(2-halobenzoyl)-hydrazones for solution-processable NIR OLEDs [J]. J. Mater. Chem. C, 2022, 10(4): 1371-1380. doi: 10.1039/d1tc04600dhttp://dx.doi.org/10.1039/d1tc04600d
WANG L D, ZHAO Z F, WEI C, et al. Review on the electroluminescence study of lanthanide complexes [J]. Adv. Opt. Mater., 2019, 7(11): 1801256-1-49. doi: 10.1002/adom.201801256http://dx.doi.org/10.1002/adom.201801256
CHEN F F, BIAN Z Q, HUANG C H. Progresses in electroluminescence based on europium(Ⅲ) complexes [J]. J. Rare Earths, 2009, 27(3): 345-355. doi: 10.1016/s1002-0721(09)00003-9http://dx.doi.org/10.1016/s1002-0721(09)00003-9
XU H, SUN Q, AN Z F, et al. Electroluminescence from europium(Ⅲ) complexes [J]. Coord. Chem. Rev., 2015, 293-294: 228-249. doi: 10.1016/j.ccr.2015.02.018http://dx.doi.org/10.1016/j.ccr.2015.02.018
JUNJI K, KATSUTOSHI N, YOSHIYUKI O, et al. Electroluminescence from polysilane film doped with europium complex [J]. Chem. Lett., 1991, 20(7): 1267-1270. doi: 10.1246/cl.1991.1267http://dx.doi.org/10.1246/cl.1991.1267
CANZLER T W, KIDO J. Exciton quenching in highly efficient europium-complex based organic light-emitting diodes [J]. Org. Electron., 2006, 7(1): 29-37. doi: 10.1016/j.orgel.2005.10.004http://dx.doi.org/10.1016/j.orgel.2005.10.004
AL-BUSAIDI I J, ILMI R, ZHANG D Y, et al. Synthesis and photophysical properties of ternary β-diketonate europium(Ⅲ) complexes incorporating bipyridine and its derivatives [J]. Dyes Pigm., 2022, 197: 109879. doi: 10.1016/j.dyepig.2021.109879http://dx.doi.org/10.1016/j.dyepig.2021.109879
JUNJI K, KATSUTOSHI N, YOSHIYUKI O. Electroluminescence in a terbium complex [J]. Chem. Lett., 1990, 19(4): 657-660. doi: 10.1246/cl.1990.657http://dx.doi.org/10.1246/cl.1990.657
YU G, DING F, WEI H, et al. Highly efficient terbium(Ⅲ)-based organic light-emitting diodes obtained by exciton confinement [J]. J. Mater. Chem. C, 2016, 4(1): 121-125. doi: 10.1039/c5tc02944ahttp://dx.doi.org/10.1039/c5tc02944a
KOZLOV M I, ASLANDUKOV A N, VASHCHENKO A A, et al. Towards efficient terbium-based solution-processed OLEDs: hole mobility increase by the ligand design [J]. J. Alloys Compd., 2021, 887: 161319. doi: 10.1016/j.jallcom.2021.161319http://dx.doi.org/10.1016/j.jallcom.2021.161319
YU T Z, SU W M, LI W L, et al. Ultraviolet electroluminescence from organic light-emitting diode with cerium(Ⅲ)-crown ether complex [J]. Solid‑State Electron., 2007, 51(6): 894-899. doi: 10.1016/j.sse.2007.05.003http://dx.doi.org/10.1016/j.sse.2007.05.003
ZHENG X L, LIU Y, PAN M, et al. Bright blue-emitting Ce3+ complexes with encapsulating polybenzimidazole tripodal ligands as potential electroluminescent devices [J]. Angew. Chem. Int. Ed., 2007, 46(39): 7399-7403. doi: 10.1002/anie.200702401http://dx.doi.org/10.1002/anie.200702401
KATKOVA M A, BURIN M E, LOGUNOV A A, et al. Lanthanide imidodiphosphinate complexes: synthesis, structure and new aspects of electroluminescent properties [J]. Synth. Met., 2009, 159(14): 1398-1402. doi: 10.1016/j.synthmet.2009.03.015http://dx.doi.org/10.1016/j.synthmet.2009.03.015
YIN H L, CARROLL P J, MANOR B C, et al. Cerium photosensitizers: structure-function relationships and applications in photocatalytic aryl coupling reactions [J]. J. Am. Chem. Soc., 2016, 138(18): 5984-5993. doi: 10.1021/jacs.6b02248http://dx.doi.org/10.1021/jacs.6b02248
WANG L D, ZHAO Z F, ZHAN G, et al. Deep-blue organic light-emitting diodes based on a doublet d-f transition cerium(Ⅲ) complex with 100% exciton utilization efficiency [J]. Light Sci. Appl., 2020, 9: 157-1-9. doi: 10.1038/S41377-020-00395-4http://dx.doi.org/10.1038/S41377-020-00395-4
ZHAO Z F, WANG L D, ZHAN G, et al. Efficient rare earth cerium(Ⅲ) complex with nanosecond d-f emission for blue organic light-emitting diodes [J]. Natl. Sci. Rev., 2021, 8(2): nwaa193-1-6. doi: 10.1093/nsr/nwaa193http://dx.doi.org/10.1093/nsr/nwaa193
YAN W C, WANG L D, QI H, et al. Highly efficient heteroleptic cerium(Ⅲ) complexes with a substituted pyrazole ancillary ligand and their application in blue organic light-emitting diodes [J]. Inorg. Chem., 2021, 60(23): 18103-18111. doi: 10.1021/acs.inorgchem.1c02711http://dx.doi.org/10.1021/acs.inorgchem.1c02711
SHIPLEY C P, CAPECCHI S, SALATA O V, et al. Orange electroluminescence from a divalent europium complex [J]. Adv. Mater., 1999, 11(7): 533-536. doi: 10.1002/(sici)1521-4095(199905)11:7<533::aid-adma533>3.0.co;2-uhttp://dx.doi.org/10.1002/(sici)1521-4095(199905)11:7<533::aid-adma533>3.0.co;2-u
LI J Y, WANG L D, ZHAO Z F, et al. Highly efficient and air-stable Eu(Ⅱ)-containing azacryptates ready for organic light-emitting diodes [J]. Nat. Commun., 2020, 11(1): 5218-1-8. doi: 10.1038/s41467-020-19027-xhttp://dx.doi.org/10.1038/s41467-020-19027-x
ZHOU L, LI L J, JIANG Y L, et al. Rare earth complex as electron trapper and energy transfer ladder for efficient red iridium complex based electroluminescent devices [J]. ACS Appl. Mater. Interfaces, 2015, 7(29): 16046-16053. doi: 10.1021/acsami.5b04348http://dx.doi.org/10.1021/acsami.5b04348
LI S B, ZHOU L, ZHANG H J. Investigation progresses of rare earth complexes as emitters or sensitizers in organic light-emitting diodes [J]. Light Sci. Appl., 2022, 11(1): 177-1-17. doi: 10.1038/s41377-022-00866-whttp://dx.doi.org/10.1038/s41377-022-00866-w
CUI R Z, LIU W Q, ZHOU L, et al. High performance red phosphorescent organic electroluminescent devices with characteristic mechanisms by utilizing terbium or gadolinium complexes as sensitizers [J]. J. Mater. Chem. C, 2017, 5(8): 2066-2073. doi: 10.1039/c6tc05542ghttp://dx.doi.org/10.1039/c6tc05542g
方培玉, 霍培昊, 刘志伟, 等. d-f跃迁发光稀土配合物研究进展 [J]. 中国稀土学报, 2021, 39(1): 58-76. doi: 10.11785/S1000-4343.20210104http://dx.doi.org/10.11785/S1000-4343.20210104
FANG P Y, HUO P H, LIU Z W, et al. Research progress of d-f transition based luminescent rare earth complexes [J]. J. Chin. Rare Earth Soc., 2021, 39(1): 58-76. (in Chinese). doi: 10.11785/S1000-4343.20210104http://dx.doi.org/10.11785/S1000-4343.20210104
ZHAN G, WANG L D, ZHAO Z F, et al. Highly efficient and air-stable lanthanide EuII complex: new emitter in organic light emitting diodes [J]. Angew. Chem. Int. Ed., 2020, 59(43): 19011-19015. doi: 10.1002/anie.202008423http://dx.doi.org/10.1002/anie.202008423
WANG L D, FANG P Y, ZHAO Z F, et al. Rare earth complexes with 5d‑4f transition: new emitters in organic light-emitting diodes [J]. J. Phys. Chem. Lett., 2022, 13(12): 2686-2694. doi: 10.1021/acs.jpclett.2c00400http://dx.doi.org/10.1021/acs.jpclett.2c00400
JIN G Q, NING Y Y, GENG J X, et al. Joining the journey to near infrared(NIR) imaging: the emerging role of lanthanides in the designing of molecular probes [J]. Inorg. Chem. Front., 2020, 7(2): 289-299. doi: 10.1039/c9qi01132chttp://dx.doi.org/10.1039/c9qi01132c
SUN G T, XIE Y, SUN L N, et al. Lanthanide upconversion and downshifting luminescence for biomolecules detection [J]. Nanoscale Horiz., 2021, 6(10): 766-780. doi: 10.1039/d1nh00299fhttp://dx.doi.org/10.1039/d1nh00299f
WANG X H, CHANG H J, XIE J, et al. Recent developments in lanthanide-based luminescent probes [J]. Coord. Chem. Rev., 2014, 273-274: 201-212. doi: 10.1016/j.ccr.2014.02.001http://dx.doi.org/10.1016/j.ccr.2014.02.001
SOINI E, HEMMILÄ I. Fluoroimmunoassay: present status and key problems [J]. Clin. Chem., 1979, 25(3): 353-361. doi: 10.1093/clinchem/25.3.353http://dx.doi.org/10.1093/clinchem/25.3.353
FERNÁNDEZ-MOREIRA V, SONG B, SIVAGNANAM V, et al. Bioconjugated lanthanide luminescent helicates as multilabels for lab-on-a-chip detection of cancer biomarkers [J]. Analyst, 2010, 135(1): 42-52. doi: 10.1039/b922124ghttp://dx.doi.org/10.1039/b922124g
DEITERS E, SONG B, CHAUVIN A S, et al. Luminescent bimetallic lanthanide bioprobes for cellular imaging with excitation in the visible-light range [J]. Chem. Eur. J., 2009, 15(4): 885-900. doi: 10.1002/chem.200801868http://dx.doi.org/10.1002/chem.200801868
NING Y Y, CHEN S, CHEN H, et al. A proof-of-concept application of water-soluble ytterbium(Ⅲ) molecular probes in in vivo NIR-Ⅱ whole body bioimaging [J]. Inorg. Chem. Front., 2019, 6(8): 1962-1967. doi: 10.1039/c9qi00157chttp://dx.doi.org/10.1039/c9qi00157c
NING Y Y, CHENG S M, WANG J X, et al. Fluorescence lifetime imaging of upper gastrointestinal pH in vivo with a lanthanide based near-infrared τ probe [J]. Chem. Sci., 2019, 10(15): 4227-4235. doi: 10.1039/c9sc00220khttp://dx.doi.org/10.1039/c9sc00220k
SU P R, WANG T, ZHOU P P, et al. Self-assembly-induced luminescence of Eu3+-complexes and application in bioimaging [J]. Natl. Sci. Rev., 2022, 9(1): nwab016-1-11. doi: 10.1093/nsr/nwab016http://dx.doi.org/10.1093/nsr/nwab016
LIU M, LI Z F, XIONG J H, et al. Structure regulation for ultra-high luminescence quantum yield lanthanide complex and simultaneous detection of cancer marker and ferrous ion [J]. J. Rare Earths, 2021, 39(10): 1194-1203. doi: 10.1016/j.jre.2020.08.014http://dx.doi.org/10.1016/j.jre.2020.08.014
BREEN C, PAL R, ELSEGOOD M R J, et al. Time-resolved luminescence detection of peroxynitrite using a reactivity-based lanthanide probe [J]. Chem. Sci., 2020, 11(12): 3164-3170. doi: 10.1039/c9sc06053ghttp://dx.doi.org/10.1039/c9sc06053g
KARMAKAR S, GHOSH A, PRASAD K, et al. Multicolour lanthanide(Ⅲ) porous 1D coordination polymers: tunable wide spectrum emission and efficient CuII sensing [J]. Dalton Trans., 2021, 50(37): 13002-13011. doi: 10.1039/d1dt01860dhttp://dx.doi.org/10.1039/d1dt01860d
CHANDA K, BALAMURALI M M. Light emitting probes‑approaches for interdisciplinary applications [J]. Chem. Soc. Rev., 2021, 50(6): 3706-3719. doi: 10.1039/d0cs01444chttp://dx.doi.org/10.1039/d0cs01444c
HUANG S Y, QIAN M, PIERRE V C. A combination of factors: tuning the affinity of Europium receptors for phosphate in water [J]. Inorg. Chem., 2019, 58(23): 16087-16099. doi: 10.1021/acs.inorgchem.9b02650http://dx.doi.org/10.1021/acs.inorgchem.9b02650
WU K J, WU C, CHEN F, et al. Time-resolved luminescent high-throughput screening platform for lysosomotropic compounds in living cells [J]. ACS Sens., 2021, 6(1): 166-174. doi: 10.1021/acssensors.0c02046http://dx.doi.org/10.1021/acssensors.0c02046
YE S, HANANYA N, GREEN O, et al. A highly selective and sensitive chemiluminescent probe for real-time monitoring of hydrogen peroxide in cells and animals [J]. Angew. Chem. Int. Ed., 2020, 59(34): 14326-14330. doi: 10.1002/anie.202005429http://dx.doi.org/10.1002/anie.202005429
BABIN B M, FERNANDEZ-CUERVO G, SHENG J, et al. Chemiluminescent protease probe for rapid, sensitive, and inexpensive detection of live Mycobacterium tuberculosis [J]. ACS Cent. Sci., 2021, 7(5): 803-814. doi: 10.1021/acscentsci.0c01345http://dx.doi.org/10.1021/acscentsci.0c01345
LIN X X, LEUNG K H, LIN L, et al. Determination of cell metabolite VEGF165 and dynamic analysis of protein-DNA interactions by combination of microfluidic technique and luminescent switch-on probe [J]. Biosens. Bioelectron., 2016, 79: 41-47. doi: 10.1016/j.bios.2015.11.089http://dx.doi.org/10.1016/j.bios.2015.11.089
0
浏览量
805
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构