浏览全部资源
扫码关注微信
1.宿迁学院 材料工程系, 江苏 宿迁 223800
2.南京理工大学 材料科学与工程学院, 江苏 南京 210094
[ "沈亚龙(1990-),男,安徽池州人,博士,讲师,2021年于南京理工大学获得博士学位,主要从事溶液工艺构筑钙钛矿纳米晶、无铅钙钛矿纳米晶 材料制备及其光电子器件等方面的 研究。" ]
[ "曾海波(1977-),男,湖北鄂州人,博士,教授,英国皇家化学会会士,美国光学会会士,2006年于中国科学院固体物理研究所获得博士学位,主要从事纳米发光与光电子学(包括低维光电(显示、探测、能源)半导体材料的理论设计、可控合成及器件应用)的研究。" ]
收稿日期:2022-05-31,
修回日期:2022-06-16,
纸质出版日期:2023-03-05
移动端阅览
沈亚龙,韩博宁,靳梓诺等.室温合成具有超纯绿光发射的准二维CsPbBr3钙钛矿纳米片[J].发光学报,2023,44(03):508-517.
SHEN Yalong,HAN Boning,JIN Zinuo,et al.Room-temperature Synthesis of Quasi-2D CsPbBr3 Nanoplatelets with Ultrapure Green Light Emissions[J].Chinese Journal of Luminescence,2023,44(03):508-517.
沈亚龙,韩博宁,靳梓诺等.室温合成具有超纯绿光发射的准二维CsPbBr3钙钛矿纳米片[J].发光学报,2023,44(03):508-517. DOI: 10.37188/CJL.20220219.
SHEN Yalong,HAN Boning,JIN Zinuo,et al.Room-temperature Synthesis of Quasi-2D CsPbBr3 Nanoplatelets with Ultrapure Green Light Emissions[J].Chinese Journal of Luminescence,2023,44(03):508-517. DOI: 10.37188/CJL.20220219.
通过配体辅助溶液相法,在室温下成功合成出一种具有超纯绿光发射的准二维CsPbBr
3
钙钛矿纳米片。该制备方法可以实现低成本、高质量CsPbBr
3
纳米片的合成。实验结果表明,合成出的CsPbBr
3
纳米片荧光发射峰位于526 nm,发射峰半高宽(FWHM)能够达到16 nm,纳米片的荧光量子效率(PLQY)高达87%。将CsPbBr
3
纳米片应用于背光显示,实现了(0.145, 0.793)的绿光坐标,该色坐标覆盖近91% 的Rec.2020绿光色域,色域范围优于目前报道的绿色荧光粉材料。此外,基于上述CsPbBr
3
荧光纳米片,我们还成功构筑出一种白光LED器件,并测得该器件在20 mA驱动电流下的发光效率为39 lm/W。
A facile ligand-assisted solution process was proposed to synthesize quasi-2D CsPbBr
3
perovskite nanoplatelets (NPs) with ultrapure green photoluminescence (PL) at room temperature. The as-synthesized CsPbBr
3
NPs exhibit an ideal emission peak at 526 nm with a narrow FWHM of 16 nm and a high photoluminescence quantum yield (PLQY) of 87%. As a green downconverter, the CsPbBr
3
NP shows a CIE coordinate at (0.145, 0.793) and covers 91% of the Rec. 2020 standard in the CIE 1931 color space, which was much better than that of all the present green phosphors. Moreover, a WLED was successfully fabricated based on these ultrapure green light-emitting CsPbBr
3
NPs, which exhibits a luminous efficiency 39 lm/W with a CIE (0.33, 0.29) under a 20 mA driving current.
LI C H A , ZHOU Z C , VASHISHTHA P , et al . The future is blue (LEDs): why chemistry is the key to perovskite displays [J]. Chem. Mater. , 2019 , 31 ( 16 ): 6003 - 6032 . doi: 10.1021/acs.chemmater.9b01650 http://dx.doi.org/10.1021/acs.chemmater.9b01650
LIN K B , XING J , QUAN L N , et al . Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent [J]. Nature , 2018 , 562 ( 7726 ): 245 - 248 . doi: 10.1038/s41586-018-0575-3 http://dx.doi.org/10.1038/s41586-018-0575-3
曾海波 , 董宇辉 . 钙钛矿量子点: 机遇与挑战 [J]. 发光学报 , 2020 , 41 ( 8 ): 940 - 944 . doi: 10.37188/fgxb20204108.0940 http://dx.doi.org/10.37188/fgxb20204108.0940
ZENG H B , DONG Y H . Perovskite quantum dots: opportunities and challenges [J]. Chin. J. Lumin. , 2020 , 41 ( 8 ): 940 - 944 . (in Chinese) . doi: 10.37188/fgxb20204108.0940 http://dx.doi.org/10.37188/fgxb20204108.0940
CHEN Q Z , YAN Y J , WU X M , et al . Gate-tunable all-inorganic QLED with enhanced charge injection balance [J]. J. Mater. Chem. C , 2020 , 8 ( 4 ): 1280 - 1285 . doi: 10.1039/c9tc06088j http://dx.doi.org/10.1039/c9tc06088j
HOU S C , GANGISHETTY M K , QUAN Q M , et al . Efficient blue and white perovskite light-emitting diodes via manganese doping [J]. Joule , 2018 , 2 ( 11 ): 2421 - 2433 . doi: 10.1016/j.joule.2018.08.005 http://dx.doi.org/10.1016/j.joule.2018.08.005
SONG J Z , LI J H , LI X M , et al . Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPb X 3 ) [J]. Adv. Mater. , 2015 , 27 ( 44 ): 7162 - 7167 . doi: 10.1002/adma.201502567 http://dx.doi.org/10.1002/adma.201502567
SHI Z F , LI S , LI Y , et al . Strategy of solution-processed all-inorganic heterostructure for humidity/temperature-stable perovskite quantum dot light-emitting diodes [J]. ACS Nano , 2018 , 12 ( 2 ): 1462 - 1472 . doi: 10.1021/acsnano.7b07856 http://dx.doi.org/10.1021/acsnano.7b07856
章楼文 , 沈少立 , 李露颖 , 等 . 铯铅卤化物钙钛矿型平面异质结LED的应用与发展 [J]. 无机材料学报 , 2019 , 34 ( 1 ): 37 - 48 . doi: 10.15541/jim20180176 http://dx.doi.org/10.15541/jim20180176
ZHANG L W , SHEN S L , LI L Y , et al . Application and development of cesium lead halide perovskite based planar heterojunction LEDs [J]. J. Inorg. Mater. , 2019 , 34 ( 1 ): 37 - 48 . (in Chinese) . doi: 10.15541/jim20180176 http://dx.doi.org/10.15541/jim20180176
CHEN J W , WANG J , XU X B , et al . Efficient and bright white light-emitting diodes based on single-layer heterophase halide perovskites [J]. Nat. Photonics , 2021 , 15 ( 3 ): 238 - 244 . doi: 10.1038/s41566-020-00743-1 http://dx.doi.org/10.1038/s41566-020-00743-1
KIM Y H , KIM S , KAKEKHANI A , et al . Comprehensive defect suppression in perovskite nanocrystals for high-efficiency light-emitting diodes [J]. Nat. Photonics , 2021 , 15 ( 2 ): 148 - 155 . doi: 10.1038/s41566-020-00732-4 http://dx.doi.org/10.1038/s41566-020-00732-4
ZHANG X Y , LIN H , HUANG H , et al . Enhancing the brightness of cesium lead halide perovskite nanocrystal based green light-emitting devices through the interface engineering with perfluorinated ionomer [J]. Nano Lett. , 2016 , 16 ( 2 ): 1415 - 1420 . doi: 10.1021/acs.nanolett.5b04959 http://dx.doi.org/10.1021/acs.nanolett.5b04959
KIM S Y , KANG H , CHANG K , et al . Case studies on structure-property relations in perovskite light-emitting diodes via interfacial engineering with self-assembled monolayers [J]. ACS Appl. Mater. Interfaces , 2021 , 13 ( 26 ): 31236 - 31247 . doi: 10.1021/acsami.1c03797 http://dx.doi.org/10.1021/acsami.1c03797
XU F X , CHEN D J , HUANG D C , et al . Suppression of photoinduced phase segregation in mixed-halide perovskite nanocrystals for stable light-emitting diodes [J]. J. Phys. Chem. Lett. , 2022 , 13 ( 2 ): 718 - 725 . doi: 10.1021/acs.jpclett.1c03895 http://dx.doi.org/10.1021/acs.jpclett.1c03895
ZHANG X T , WANG C C , ZHANG Y , et al . Bright orange electroluminescence from lead-free two-dimensional perovskites [J]. ACS Energy Lett. , 2019 , 4 ( 1 ): 242 - 248 . doi: 10.1021/acsenergylett.8b02239 http://dx.doi.org/10.1021/acsenergylett.8b02239
LI J H , XU L M , WANG T , et al . 50-fold EQE improvement up to 6.27% of solution-processed all-inorganic perovskite CsPbBr 3 QLEDs via surface ligand density control [J]. Adv. Mater. , 2017 , 29 ( 5 ): 1603885-1-9 . doi: 10.1002/adma.201603885 http://dx.doi.org/10.1002/adma.201603885
ZHANG D D , EATON S W , YU Y , et al . Solution-phase synthesis of cesium lead halide perovskite nanowires [J]. J. Am. Chem. Soc. , 2015 , 137 ( 29 ): 9230 - 9233 . doi: 10.1021/jacs.5b05404 http://dx.doi.org/10.1021/jacs.5b05404
CAO F , YU D J , GU Y , et al . Novel optoelectronic rotors based on orthorhombic CsPb(Br/I) 3 nanorods [J]. Nanoscale , 2019 , 11 ( 7 ): 3117 - 3122 . doi: 10.1039/c8nr06768f http://dx.doi.org/10.1039/c8nr06768f
ZHANG J , YANG X K , DENG H , et al . Low-dimensional halide perovskites and their advanced optoelectronic applications [J]. Nano⁃Micro Lett. , 2017 , 9 ( 3 ): 36-1-26 . doi: 10.1007/s40820-017-0137-5 http://dx.doi.org/10.1007/s40820-017-0137-5
WU Y , WEI C T , LI X M , et al . In situ passivation of PbBr 6 4– octahedra toward blue luminescent CsPbBr 3 nanoplatelets with near 100% absolute quantum yield [J]. ACS Energy Lett. , 2018 , 3 ( 9 ): 2030 - 2037 . doi: 10.1021/acsenergylett.8b01025 http://dx.doi.org/10.1021/acsenergylett.8b01025
STOUMPOS C C , CAO D H , CLARK D J , et al . Ruddlesden⁃Popper hybrid lead iodide perovskite 2D homologous semiconductors [J]. Chem. Mater. , 2016 , 28 ( 8 ): 2852 - 2867 . doi: 10.1021/acs.chemmater.6b00847 http://dx.doi.org/10.1021/acs.chemmater.6b00847
NASILOWSKI M , MAHLER B , LHUILLIER E , et al . Two-dimensional colloidal nanocrystals [J]. Chem. Rev. , 2016 , 116 ( 18 ): 10934 - 10982 . doi: 10.1021/acs.chemrev.6b00164 http://dx.doi.org/10.1021/acs.chemrev.6b00164
KUMAR S , JAGIELSKI J , KALLIKOUNIS N , et al . Ultrapure green light-emitting diodes using two-dimensional formamidinium perovskites: achieving recommendation 2020 color coordinates [J]. Nano Lett. , 2017 , 17 ( 9 ): 5277 - 5284 . doi: 10.1021/acs.nanolett.7b01544 http://dx.doi.org/10.1021/acs.nanolett.7b01544
YU D J , CAO F , GAO Y J , et al . Room-temperature ion-exchange-mediated self-assembly toward formamidinium perovskite nanoplates with finely tunable, ultrapure green emissions for achieving Rec. 2020 displays [J]. Adv. Funct. Mater. , 2018 , 28 ( 19 ): 1800248-1-8 . doi: 10.1002/adfm.201800248 http://dx.doi.org/10.1002/adfm.201800248
QIN H Y , NIU Y , MENG R Y , et al . Single-dot spectroscopy of zinc-blende CdSe/CdS core/shell nanocrystals: nonblinking and correlation with ensemble measurements [J]. J. Am. Chem. Soc. , 2014 , 136 ( 1 ): 179 - 187 . doi: 10.1021/ja4078528 http://dx.doi.org/10.1021/ja4078528
JEONG K S , GUYOT-SIONNEST P . Mid-infrared photoluminescence of CdS and CdSe colloidal quantum dots [J]. ACS Nano , 2016 , 10 ( 2 ): 2225 - 2231 . doi: 10.1021/acsnano.5b06882 http://dx.doi.org/10.1021/acsnano.5b06882
PRIANTE D , DURSUN I , ALIAS M S , et al . The recombination mechanisms leading to amplified spontaneous emission at the true-green wavelength in CH 3 NH 3 PbBr 3 perovskites [J]. Appl. Phys. Lett. , 2015 , 106 ( 8 ): 081902-1-4 . doi: 10.1063/1.4913463 http://dx.doi.org/10.1063/1.4913463
DEY P , PAUL J , BYLSMA J , et al . Origin of the temperature dependence of the band gap of PbS and PbSe quantum dots [J]. Solid State Commun. , 2013 , 165 : 49 - 54 . doi: 10.1016/j.ssc.2013.04.022 http://dx.doi.org/10.1016/j.ssc.2013.04.022
LIU M , ZHONG G H , YIN Y M , et al . Aluminum-doped cesium lead bromide perovskite nanocrystals with stable blue photoluminescence used for display backlight [J]. Adv. Sci. , 2017 , 4 ( 11 ): 1700335-1-8 . doi: 10.1002/advs.201700335 http://dx.doi.org/10.1002/advs.201700335
LI C L , ZANG Z G , CHEN W W , et al . Highly pure green light emission of perovskite CsPbBr 3 quantum dots and their application for green light-emitting diodes [J]. Opt. Express , 2016 , 24 ( 13 ): 15071 - 15078 . doi: 10.1364/oe.24.015071 http://dx.doi.org/10.1364/oe.24.015071
YAN D D , ZHAO S Y , WANG H X , et al . Ultrapure and highly efficient green light emitting devices based on ligand-modified CsPbBr 3 quantum dots [J]. Photonics Res. , 2020 , 8 ( 7 ): 1086 - 1092 . doi: 10.1364/prj.391703 http://dx.doi.org/10.1364/prj.391703
ZHANG Q G , SUN X C , ZHENG W L , et al . Band gap engineering toward wavelength tunable CsPbBr 3 nanocrystals for achieving Rec. 2020 displays [J]. Chem. Mater. , 2021 , 33 ( 10 ): 3575 - 3584 . doi: 10.1021/acs.chemmater.1c00145 http://dx.doi.org/10.1021/acs.chemmater.1c00145
QIU L , YANG H , DAI Z G , et al . Highly efficient and stable CsPbBr 3 perovskite quantum dots by encapsulation in dual-shell hollow silica spheres for WLEDs [J]. Inorg. Chem. Front , 2020 , 7 ( 10 ): 2060 - 2071 . doi: 10.1039/d0qi00208a http://dx.doi.org/10.1039/d0qi00208a
SUN Y , LI Y N , ZHANG W Y , et al . Simultaneous synthesis, modification, and DFT calculation of three-color lead halide perovskite phosphors for improving stability and luminous efficiency of WLEDs [J]. Adv. Optical. Mater. , 2022 , 10 ( 2 ): 2101765-1-14 . doi: 10.1002/adom.202101765 http://dx.doi.org/10.1002/adom.202101765
LIU Y , SHI B F , LIU Q , et al . Large-scale synthesis of layered double hydroxide nanosheet-stabilized CsPbBr 3 perovskite quantum dots for WLEDs [J]. J. Alloys Compd. , 2020 , 843 : 155819-1 - 9 . doi: 10.1016/j.jallcom.2020.155819 http://dx.doi.org/10.1016/j.jallcom.2020.155819
LI S , SHI Z F , ZHANG F , et al . Sodium doping-enhanced emission efficiency and stability of CsPbBr 3 nanocrystals for white light-emitting devices [J]. Chem. Mater. , 2019 , 31 ( 11 ): 3917 - 3928 . doi: 10.1021/acs.chemmater.8b05362 http://dx.doi.org/10.1021/acs.chemmater.8b05362
MO Q H , CHEN C , CAI W S , et al . Room temperature synthesis of stable zirconia-coated CsPbBr 3 nanocrystals for white light-emitting diodes and visible light communication [J]. Laser Photonics Rev. , 2021 , 15 ( 10 ): 2100278-1-9 . doi: 10.1002/lpor.202100278 http://dx.doi.org/10.1002/lpor.202100278
EROL E , VAHEDIGHAREHCHOPOGH N , EKIM U , et al . Ultra-stable Eu 3+ /Dy 3+ co-doped CsPbBr 3 quantum dot glass nanocomposites with tunable luminescence properties for phosphor-free WLED applications [J]. J. Alloys Compd. , 2022 , 909 : 164650-1 - 8 . doi: 10.1016/j.jallcom.2022.164650 http://dx.doi.org/10.1016/j.jallcom.2022.164650
0
浏览量
1025
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构