浏览全部资源
扫码关注微信
1.五邑大学 应用物理与材料学院, 广东 江门 529020
2.华南理工大学材料科学与工程学院 发光材料与器件国家重点实验室, 广东 广州 510641
3.上海理工大学 光电信息与计算机工程学院, 上海 200093
[ "禹庭(1988-),男,湖南邵东人,博士,讲师,2019年于华南理工大学获得博士学位,主要从事稀土/过渡金属发光材料与器件的基础研究。 E-mail: yuting1009@163.com" ]
[ "禹德朝(1984-),男,河南驻马店人,博士,特聘教授,2014年于华南理工大学获得博士学位,主要从事新型无机光学功能材料的开发、功能复合化与器件化应用的基础研究。 E-mail: d.yu@usst.edu.cn" ]
纸质出版日期:2022-09-05,
收稿日期:2022-05-08,
修回日期:2022-05-16,
移动端阅览
禹庭,郑成中,赵闪闪等.Monte Carlo模拟在稀土掺杂发光材料能量传递机理研究中的应用进展[J].发光学报,2022,43(09):1390-1404.
YU Ting,ZHENG Cheng-zhong,ZHAO Shan-shan,et al.Progress on Application of Monte Carlo Simulation in Studying Energy Transfer Mechanisms for Rare-earth Luminescent Materials[J].Chinese Journal of Luminescence,2022,43(09):1390-1404.
禹庭,郑成中,赵闪闪等.Monte Carlo模拟在稀土掺杂发光材料能量传递机理研究中的应用进展[J].发光学报,2022,43(09):1390-1404. DOI: 10.37188/CJL.20220188.
YU Ting,ZHENG Cheng-zhong,ZHAO Shan-shan,et al.Progress on Application of Monte Carlo Simulation in Studying Energy Transfer Mechanisms for Rare-earth Luminescent Materials[J].Chinese Journal of Luminescence,2022,43(09):1390-1404. DOI: 10.37188/CJL.20220188.
高性能可调控的稀土发光材料及相关物理机制的探究是设计和开发新型发光材料与器件的重点与难点。其中,揭示离子间复杂的微观相互作用产生的能量传递特性一直是稀土掺杂发光材料研究中的关键问题。Monte Carlo模拟是一种依赖大量重复的随机抽样获得数值结果的统计模拟方法,是稀土发光领域中结合基质晶体结构、离子掺杂行为、荧光衰减动力学数据等对离子间能量传递机理进行系统研究的重要工具。本文首先简要介绍Monte Carlo模拟的基本原理及建模方法;然后从影响能量传递的相互作用机理和几何因素出发,概述了利用Monte Carlo方法研究离子间能量传递的进展;最后进行总结并对该方法在稀土发光材料中的应用进行了展望。
High-performance tunable luminescent materials activated by rare-earth ions, as well as studies on the involved physical mechanisms, are the emphasis and difficulties of design and development of novel luminescent materials and optoelectronic devices. Thereinto, fundamentally unveiling the energy transfer processes induced by the sophisticated interionic interaction has been a vital research problem for the rare-earth luminescent materials. Monte Carlo simulation is a statistical simulation method that relies on huge amounts of repeated random samples to acquire numerical results. In the research field of rare-earth luminescence, Monte Carlo method has become a critical tool to systematically study the interionic energy transfer mechanisms by fully considering the crystal structures, rare-earth-doping behaviors, decay dynamics of fluorescence,
etc
. In this paper, we first introduce the basic principles and modeling methods of Monte Carlo simulation. Then starting from the interaction mechanisms and geometrical factors of determining energy transfer processes, we generalize the research progresses using Monte Carlo method to fundamentally study the energy transfer modes. At last we give a brief summary as well as a short prospect on the applications of Monte Carlo simulation in investigating rare-earth luminescent materials.
稀土离子能量传递发光材料Monte Carlo模拟时间分辨光谱
rare-earth ionsenergy transferluminescent materialsMonte Carlo simulationtime-resolved spectrum
YU D C, YU T, LIN H, et al. Recent advances in luminescent downconversion: new materials, techniques, and applications in solar cells [J]. Adv. Opt. Mater., 2022, 10(12): 2200014. doi: 10.1002/adom.202200014http://dx.doi.org/10.1002/adom.202200014
宋宏伟, 周东磊, 白雪, 等. 稀土掺杂量子剪裁发光材料简述 [J]. 中国稀土学报, 2022, 40(2): 169-180.
SONG H W, ZHOU D L, BAI X, et al. A review: rare earth doped quantum cutting luminescent materials [J]. J. Chin. Soc. Rare Earths, 2022, 40(2): 169-180. (in Chinese)
白雪, 徐赞, 字映竹, 等. 基于变色效应的无机稀土发光材料荧光可逆调控及应用 [J]. 发光学报, 2022, 43(4): 463-477. doi: 10.37188/CJL.20210326http://dx.doi.org/10.37188/CJL.20210326
BAI X, XU Z, ZI Y Z, et al. Reversible fluorescence modulation and applications based on chromic effect in inorganic rare-earth luminescent materials [J]. Chin. J. Lumin., 2022, 43(4): 463-477. (in Chinese). doi: 10.37188/CJL.20210326http://dx.doi.org/10.37188/CJL.20210326
WANG L, XIE R J, SUEHIRO T, et al. Down-conversion nitride materials for solid state lighting: recent advances and perspectives [J]. Chem. Rev., 2018, 118(4): 1951-2009. doi: 10.1021/acs.chemrev.7b00284http://dx.doi.org/10.1021/acs.chemrev.7b00284
XIA Z G, LIU Q L. Progress in discovery and structural design of color conversion phosphors for LEDs [J]. Prog. Mater. Sci., 2016, 84: 59-117. doi: 10.1016/j.pmatsci.2016.09.007http://dx.doi.org/10.1016/j.pmatsci.2016.09.007
GAI S L, LI C X, YANG P P, et al. Recent progress in rare earth micro/nanocrystals: soft chemical synthesis, luminescent properties, and biomedical applications [J]. Chem. Rev., 2014, 114(4): 2343-2389. doi: 10.1021/cr4001594http://dx.doi.org/10.1021/cr4001594
YE S, XIAO F, PAN Y X, et al. Phosphors in phosphor-converted white light-emitting diodes: recent advances in materials, techniques and properties [J]. Mater. Sci. Eng. R Rep., 2010, 71(1): 1-34. doi: 10.1016/j.mser.2010.07.001http://dx.doi.org/10.1016/j.mser.2010.07.001
ZHANG Q Y, HUANG X Y. Recent progress in quantum cutting phosphors [J]. Prog. Mater. Sci., 2010, 55(5): 353-427. doi: 10.1016/j.pmatsci.2009.10.001http://dx.doi.org/10.1016/j.pmatsci.2009.10.001
韦先涛, 姜桂铖, 邓楷模, 等. 稀土掺杂的光谱转换材料及其应用 [J]. 中国科学: 物理学 力学 天文学, 2012, 42(11): 1112-1123. doi: 10.1360/132012-783http://dx.doi.org/10.1360/132012-783
WEI X T, JIANG G C, DENG K M, et al. Rare-earth doped optical spectral conversion materials with their applications [J]. Sci. Sinica Phys, Mech. Astron., 2012, 42(11): 1112-1123. (in Chinese). doi: 10.1360/132012-783http://dx.doi.org/10.1360/132012-783
禹德朝, 张勤远. 近红外量子剪裁研究进展 [J]. 中国科学: 化学, 2013, 43(11): 1431-1456. doi: 10.1360/032013-296http://dx.doi.org/10.1360/032013-296
YU D C, ZHANG Q Y. Recent advances in near-infrared quantum cutting [J]. Sci. Sinica Chem., 2013, 43(11): 1431-1456. (in Chinese). doi: 10.1360/032013-296http://dx.doi.org/10.1360/032013-296
ZHUANG Y X, CHEN D R, CHEN W J, et al. X-ray-charged bright persistent luminescence in NaYF4∶Ln3+@NaYF4 nanoparticles for multidimensional optical information storage [J]. Light Sci. Appl., 2021, 10(1): 132-1-10. doi: 10.1038/s41377-021-00575-whttp://dx.doi.org/10.1038/s41377-021-00575-w
YU D C, LI H Y, ZHANG D W, et al. One ion to catch them all: targeted high-precision Boltzmann thermometry over a wide temperature range with Gd3+ [J]. Light Sci. Appl., 2021, 10(1): 236-1-12. doi: 10.1038/s41377-021-00677-5http://dx.doi.org/10.1038/s41377-021-00677-5
JIN S L, LI R F, HUANG H, et al. Compact ultrabroadband light-emitting diodes based on lanthanide-doped lead-free double perovskites [J]. Light Sci. Appl., 2022, 11(1): 52-1-13. doi: 10.1038/s41377-022-00739-2http://dx.doi.org/10.1038/s41377-022-00739-2
尹民, 闻军, 段昌奎. 稀土离子激活发光材料中能级跃迁的选择定则 [J]. 发光学报, 2011, 32(7): 643-649. doi: 10.3788/fgxb20113207.0643http://dx.doi.org/10.3788/fgxb20113207.0643
YIN M, WEN J, DUAN C K. Transition selection rules of rare-earth in optical materials [J]. Chin. J. Lumin., 2011, 32(7): 643-649. (in Chinese). doi: 10.3788/fgxb20113207.0643http://dx.doi.org/10.3788/fgxb20113207.0643
ZHANG J H, HAO Z D, LI J, et al. Observation of efficient population of the red-emitting state from the green state by non-multiphonon relaxation in the Er3+-Yb3+ system [J]. Light Sci. Appl., 2015, 4(1): e239-1-6. doi: 10.1038/lsa.2015.12http://dx.doi.org/10.1038/lsa.2015.12
YAN S Y, LIU F, ZHANG J H, et al. Persistent emission of narrowband ultraviolet-B light upon blue-light illumination [J]. Phys. Rev. Appl., 2020, 13(4): 044051-1-8. doi: 10.1103/physrevapplied.13.044051http://dx.doi.org/10.1103/physrevapplied.13.044051
DEXTER D L. A theory of sensitized luminescence in solids [J]. J. Chem. Phys., 1953, 21(5): 836-850. doi: 10.1063/1.1699044http://dx.doi.org/10.1063/1.1699044
INOKUTI M, HIRAYAMA F. Influence of energy transfer by the exchange mechanism on donor luminescence [J]. J. Chem. Phys., 1965, 43(6): 1978-1989. doi: 10.1063/1.1697063http://dx.doi.org/10.1063/1.1697063
TANNER P A, ZHOU L, DUAN C K, et al. Misconceptions in electronic energy transfer: bridging the gap between chemistry and physics [J]. Chem. Soc. Rev., 2018, 47(14): 5234-5265. doi: 10.1039/c8cs00002fhttp://dx.doi.org/10.1039/c8cs00002f
LIU X F, QIU J R. Recent advances in energy transfer in bulk and nanoscale luminescent materials: from spectroscopy to applications [J]. Chem. Soc. Rev., 2015, 44(23): 8714-8746. doi: 10.1039/c5cs00067jhttp://dx.doi.org/10.1039/c5cs00067j
LI K, SHANG M M, LIAN H Z, et al. Recent development in phosphors with different emitting colors via energy transfer [J]. J. Mater. Chem. C, 2016, 4(24): 5507-5530. doi: 10.1039/c6tc00436ahttp://dx.doi.org/10.1039/c6tc00436a
HAN X X, SONG E H, CHEN W B, et al. Color-tunable upconversion luminescence and prolonged Eu3+ fluorescence lifetime in fluoride KCdF3∶Yb3+, Mn2+, Eu3+ via controllable and efficient energy transfer [J]. J. Mater. Chem. C, 2020, 8(29): 9836-9844. doi: 10.1039/d0tc01502dhttp://dx.doi.org/10.1039/d0tc01502d
ZHOU D L, LIU D L, PAN G C, et al. Cerium and ytterbium codoped halide perovskite quantum dots: a novel and efficient downconverter for improving the performance of silicon solar cells [J]. Adv. Mater., 2017, 29(42): 1704149-1-6. doi: 10.1002/adma.201704149http://dx.doi.org/10.1002/adma.201704149
YU T, YU D C, ZHANG Q Y, et al. Thermally deactivated energy transfer in Bi3+-Yb3+ codoped Y2O3: evidence for the exchange interaction mechanism [J]. Phys. Rev. B, 2018, 98(13): 134308-1-8. doi: 10.1103/physrevb.98.134308http://dx.doi.org/10.1103/physrevb.98.134308
OU Y Y, ZHOU W J, ZHU Z C, et al. Host differential sensitization toward color/lifetime-tuned lanthanide coordination polymers for optical multiplexing [J]. Angew. Chem. Int. Ed., 2020, 59(52): 23810-23816. doi: 10.1002/anie.202011559http://dx.doi.org/10.1002/anie.202011559
HE S, ZHANG L L, WU H, et al. Efficient super broadband NIR Ca2LuZr2Al3O12∶Cr3+, Yb3+ garnet phosphor for pc-LED light source toward NIR spectroscopy applications [J]. Adv. Opt. Mater., 2020, 8(6): 1901684-1-7. doi: 10.1002/adom.201901684http://dx.doi.org/10.1002/adom.201901684
XIAO W G, LIU X F, ZHANG J H, et al. Realizing visible light excitation of Tb3+ via highly efficient energy transfer from Ce3+ for LED-based applications [J]. Adv. Opt. Mater., 2019, 7(9): 1801677-1-6. doi: 10.1002/adom.201801677http://dx.doi.org/10.1002/adom.201801677
SU P, MA C G, BRIK M G, et al. A short review of theoretical and empirical models for characterization of optical materials doped with the transition metal and rare earth ions [J]. Opt. Mater., 2018, 79: 129-136. doi: 10.1016/j.optmat.2018.03.032http://dx.doi.org/10.1016/j.optmat.2018.03.032
CHEN Q L, SHANG L B, XU H M, et al. Rationalizing the structural changes and spectra of manganese and their temperature dependence in a series of garnets with first-principles calculations [J]. Phys. Rev. B, 2022, 105(3): 035158-1-12. doi: 10.1103/physrevb.105.035158http://dx.doi.org/10.1103/physrevb.105.035158
BRIK M G, MA C G, YAMAMOTO T, et al. First‐principles methods as a powerful tool for fundamental and applied research in the field of optical materials [M]. LIU R S, WANG X J. Phosphor Handbook. 3rd ed. Boca Raton: CRC Press, 2022: 1-26.
裴鹿成, 王仲奇. 蒙特卡罗方法及其应用 [M]. 北京: 海洋出版社, 1998.
PEI L C, WANG Z Q. Monte Carlo Methods and Their Applications [M]. Beijing: China Ocean Press, 1998. (in Chinese)
BARBOSA-GARCIA O, STRUCK C W. Monte Carlo treatment of the nonradiative energy transfer process for nonrandom placements of dopants in solids [J]. J. Chem. Phys., 1994, 100(6): 4554-4568. doi: 10.1063/1.466287http://dx.doi.org/10.1063/1.466287
VEGA-DURÁN J T, BARBOSA-GARCÍA O, DIÁZ-TORRES L A, et al. Effects of energy back transfer on the luminescence of Yb and Er ions in YAG [J]. Appl. Phys. Lett., 2000, 76(15): 2032-2034. doi: 10.1063/1.126245http://dx.doi.org/10.1063/1.126245
VERGEER P, VLUGT T J H, KOX M H F, et al. Quantum cutting by cooperative energy transfer in YbxY1-xPO4∶Tb3+ [J]. Phys. Rev. B, 2005, 71(1): 014119-1-11. doi: 10.1103/physrevb.71.014119http://dx.doi.org/10.1103/physrevb.71.014119
YU D C, YU T, VAN BUNNINGEN A J, et al. Understanding and tuning blue-to-near-infrared photon cutting by the Tm3+/Yb3+ couple [J]. Light Sci. Appl., 2020, 9(1): 107-1-9. doi: 10.1038/s41377-020-00346-zhttp://dx.doi.org/10.1038/s41377-020-00346-z
YU D C, RABOUW F T, BOON W Q, et al. Insights into the energy transfer mechanism in Ce3+-Yb3+codoped YAG phosphors [J]. Phys. Rev. B, 2014, 90(16): 165126-1-7. doi: 10.1103/physrevb.90.165126http://dx.doi.org/10.1103/physrevb.90.165126
ZHANG Q Y, YANG G F, JIANG Z H. Cooperative downconversion in GdAl3(BO3)4∶RE3+,Yb3+ (RE=Pr, Tb, and Tm) [J]. Appl. Phys. Lett., 2007, 91(5): 051903-1-3. doi: 10.1063/1.2757595http://dx.doi.org/10.1063/1.2757595
VAN DER ENDE B M, AARTS L, MEIJERINK A. Near-infrared quantum cutting for photovoltaics [J]. Adv. Mater., 2009, 21(30): 3073-3077. doi: 10.1002/adma.200802220http://dx.doi.org/10.1002/adma.200802220
VAN WIJNGAARDEN J T, SCHEIDELAAR S, VLUGT T J H, et al. Energy transfer mechanism for downconversion in the (Pr3+,Yb3+) couple [J]. Phys. Rev. B, 2010, 81(15): 155112-1-6. doi: 10.1103/physrevb.81.155112http://dx.doi.org/10.1103/physrevb.81.155112
XIA Z G, MEIJERINK A. Ce3+-doped garnet phosphors: composition modification, luminescence properties and applications [J]. Chem. Soc. Rev., 2017, 46(1): 275-299. doi: 10.1039/c6cs00551ahttp://dx.doi.org/10.1039/c6cs00551a
郑鹏, 丁国真, 解荣军. Ce3+和Eu2+掺杂荧光材料的光猝灭机理研究进展 [J]. 发光学报, 2021, 42(10): 1447-1457. doi: 10.37188/cjl.20210173http://dx.doi.org/10.37188/cjl.20210173
ZHENG P, DING G Z, XIE R J. Research progress on optical quenching of Ce3+-and Eu2+-doped luminescent materials [J]. Chin. J. Lumin., 42(10): 1447-1457. (in Chinese). doi: 10.37188/cjl.20210173http://dx.doi.org/10.37188/cjl.20210173
XIAO Y, HAO Z D, ZHANG L L, et al. An efficient green phosphor of Ce3+ and Tb3+-codoped Ba2Lu5B5O17 and a model for elucidating the high thermal stability of the green emission [J]. J. Mater. Chem. C, 2018, 6(22): 5984-5991. doi: 10.1039/c7tc05614ahttp://dx.doi.org/10.1039/c7tc05614a
CHEN D Q, WANG Y S, YU Y L, et al. Quantum cutting downconversion by cooperative energy transfer from Ce3+ to Yb3+ in borate glasses [J]. J. Appl. Phys., 2008, 104(11): 116105-1-3. doi: 10.1063/1.3040005http://dx.doi.org/10.1063/1.3040005
ZHOU L, TANNER P A, NING L X, et al. Spectral properties and energy transfer between Ce3+ and Yb3+ in the Ca3Sc2Si3O12 host: is it an electron transfer mechanism? [J]. J. Phys. Chem. A, 2016, 120(28): 5539-5548. doi: 10.1021/acs.jpca.6b04641http://dx.doi.org/10.1021/acs.jpca.6b04641
LUO Z H, LIU Y F, ZHANG C H, et al. Effect of Yb3+ on the crystal structural modification and photoluminescence properties of GGAG∶Ce3+ [J]. Inorg. Chem., 2016, 55(6): 3040-3046. doi: 10.1021/acs.inorgchem.5b02941http://dx.doi.org/10.1021/acs.inorgchem.5b02941
SONTAKKE A D, VAN BUNNINGEN A J, RABOUW F T, et al. Unraveling the Eu2+→Mn2+ energy transfer mechanism in w-LED phosphors [J]. J. Phys. Chem. C, 2020, 124(25): 13902-13911. doi: 10.1021/acs.jpcc.0c03425http://dx.doi.org/10.1021/acs.jpcc.0c03425
YU D C, YU T, WANG Y Z, et al. Multiphoton near-infrared quantum splitting of Er3+ [J]. Phys. Rev. Appl., 2020, 13(2): 024076-1-10. doi: 10.1103/physrevapplied.13.024076http://dx.doi.org/10.1103/physrevapplied.13.024076
KANG S L, OUYANG T C, YANG D D, et al. Enhanced 2 µm mid-infrared laser output from Tm3+-activated glass ceramic microcavities [J]. Laser Photonics Rev., 2020, 14(5): 1900396-1-8. doi: 10.1002/lpor.201900396http://dx.doi.org/10.1002/lpor.201900396
YU T, LIN H H, YU D C, et al. Energy transfer dynamics and quantum yield derivation of the Tm3+ concentration-dependent, three-photon near-infrared quantum cutting in La2BaZnO5 [J]. J. Phys. Chem. C, 2015, 119(47): 26643-26651. doi: 10.1021/acs.jpcc.5b07729http://dx.doi.org/10.1021/acs.jpcc.5b07729
YU D C, MARTÍN-RODRÍGUEZ R, ZHANG Q Y, et al. Multi-photon quantum cutting in Gd2O2S∶Tm3+ to enhance the photo-response of solar cells [J]. Light Sci. Appl., 2015, 4(10): e344. doi: 10.1038/lsa.2015.117http://dx.doi.org/10.1038/lsa.2015.117
YU D C, HUANG X Y, YE S, et al. Three-photon near-infrared quantum splitting in β-NaYF4∶Ho3+ [J]. Appl. Phys. Lett., 2011, 99(16): 161904-1-3. doi: 10.1063/1.3652916http://dx.doi.org/10.1063/1.3652916
VAN SWIETEN T P, YU D C, YU T, et al. A Ho3+-based luminescent thermometer for sensitive sensing over a wide temperature range [J]. Adv. Opt. Mater., 2021, 9(1): 2001518-1-7. doi: 10.1002/adom.202001518http://dx.doi.org/10.1002/adom.202001518
WU H, HAO Z D, ZHANG L L, et al. Phonon energy dependent energy transfer upconversion for the red emission in the Er3+/Yb3+ system [J]. J. Phys. Chem. C, 2018, 122(17): 9611-9618. doi: 10.1021/acs.jpcc.8b02446http://dx.doi.org/10.1021/acs.jpcc.8b02446
YU D C, BALLATO J, RIMAN R E. Temperature-dependence of multiphonon relaxation of rare-earth ions in solid-state hosts [J]. J. Phys. Chem. C, 2016, 120(18): 9958-9964. doi: 10.1021/acs.jpcc.6b01466http://dx.doi.org/10.1021/acs.jpcc.6b01466
XU X H, ZHANG W F, YANG D C, et al. Phonon-assisted population inversion in lanthanide-doped upconversion Ba2LaF7 nanocrystals in glass-ceramics [J]. Adv. Mater., 2016, 28(36): 8045-8050. doi: 10.1002/adma.201601405http://dx.doi.org/10.1002/adma.201601405
ZHENG W, ZHU H M, LI R F, et al. Visible-to-infrared quantum cutting by phonon-assisted energy transfer in YPO4:Tm3+, Yb3+ phosphors [J]. Phys. Chem. Chem. Phys., 2012, 14(19): 6974-6980. doi: 10.1039/c2cp24044khttp://dx.doi.org/10.1039/c2cp24044k
WU M, SONG E H, CHEN Z T, et al. Single-band red upconversion luminescence of Yb3+⁃Er3+ via nonequivalent substitution in perovskite KMgF3 nanocrystals [J]. J. Mater. Chem. C, 2016, 4(8): 1675-1684. doi: 10.1039/c5tc03600chttp://dx.doi.org/10.1039/c5tc03600c
SONG E H, CHEN Z T, WU M, et al. Room-temperature wavelength-tunable single-band upconversion luminescence from Yb3+/Mn2+ codoped fluoride perovskites ABF3 [J]. Adv. Opt. Mater., 2016, 4(5): 798-806. doi: 10.1002/adom.201500732http://dx.doi.org/10.1002/adom.201500732
SONG E H, HAN X X, ZHOU Y Y, et al. Long-lived photon upconversion phosphorescence in RbCaF3∶Mn2+, Yb3+ and the dynamic color separation effect [J]. iScience, 2019, 19: 597-606. doi: 10.1016/j.isci.2019.08.013http://dx.doi.org/10.1016/j.isci.2019.08.013
ZHOU D L, SUN R, XU W, et al. Impact of host composition, codoping, or tridoping on quantum-cutting emission of ytterbium in halide perovskite quantum dots and solar cell applications [J]. Nano Lett., 2019, 19(10): 6904-6913. doi: 10.1021/acs.nanolett.9b02139http://dx.doi.org/10.1021/acs.nanolett.9b02139
WANG J, DENG R R, MACDONALD M A, et al. Enhancing multiphoton upconversion through energy clustering at sublattice level [J]. Nat. Mater., 2014, 13(2): 157-162. doi: 10.1038/nmat3804http://dx.doi.org/10.1038/nmat3804
YU T, YU D C, LIN H H, et al. Single-band near-infrared quantum cutting of Ho3+-Yb3+ codoped KLu2F7 phosphors by energy clustering [J]. J. Alloys Compd., 2017, 695: 1154-1159. doi: 10.1016/j.jallcom.2016.10.242http://dx.doi.org/10.1016/j.jallcom.2016.10.242
LIU Y, BAI G X, LYU Y, et al. Ultrabroadband tuning and fine structure of emission spectra in lanthanide Er-doped ZnSe nanosheets for display and temperature sensing [J]. ACS Nano, 2020, 14(11): 16003-16012. doi: 10.1021/acsnano.0c07547http://dx.doi.org/10.1021/acsnano.0c07547
CHENG X W, TU D T, ZHENG W, et al. Energy transfer designing in lanthanide-doped upconversion nanoparticles [J]. Chem. Commun., 2020, 56(96): 15118-15132. doi: 10.1039/d0cc05878ehttp://dx.doi.org/10.1039/d0cc05878e
PAN G C, BAI X, YANG D W, et al. Doping lanthanide into perovskite nanocrystals: highly improved and expanded optical properties [J]. Nano Lett., 2017, 17(12): 8005-8011. doi: 10.1021/acs.nanolett.7b04575http://dx.doi.org/10.1021/acs.nanolett.7b04575
LEI L, XIA H, LIM C K, et al. Modulation of surface energy transfer cascade for reversible photoluminescence pH sensing [J]. Chem. Mater., 2019, 31(19): 8121-8128. doi: 10.1021/acs.chemmater.9b02857http://dx.doi.org/10.1021/acs.chemmater.9b02857
RABOUW F T, DEN HARTOG S A, SENDEN T, et al. Photonic effects on the Förster resonance energy transfer efficiency [J]. Nat. Commun., 2014, 5: 3610-1-6. doi: 10.1038/ncomms4610http://dx.doi.org/10.1038/ncomms4610
RABOUW F T, PRINS P T, VILLANUEVA-DELGADO P, et al. Quenching pathways in NaYF4∶Er3+,Yb3+ upconversion nanocrystals [J]. ACS Nano, 2018, 12(5): 4812-4823. doi: 10.1021/acsnano.8b01545http://dx.doi.org/10.1021/acsnano.8b01545
MANGNUS M J J, ZOM J, WELLING T A J, et al. Finite-size effects on energy transfer between dopants in nanocrystals [J]. ACS Nanosci. Au, 2022, 2(2): 111-118. doi: 10.1021/acsnanoscienceau.1c00033http://dx.doi.org/10.1021/acsnanoscienceau.1c00033
SARKAR S, MEESARAGANDLA B, HAZRA C, et al. Sub-5 nm Ln3+-doped BaLuF5 nanocrystals: a platform to realize upconversion via interparticle energy transfer(IPET) [J]. Adv. Mater., 2013, 25(6): 856-860. doi: 10.1002/adma.201203641http://dx.doi.org/10.1002/adma.201203641
VAN DE HAAR M A, BERENDS A C, KRAMES M R, et al. Eu3+ sensitization via nonradiative interparticle energy transfer using inorganic nanoparticles [J]. J. Phys. Chem. Lett., 2020, 11(3): 689-695. doi: 10.1021/acs.jpclett.9b03764http://dx.doi.org/10.1021/acs.jpclett.9b03764
XU H, HAN S Y, DENG R R, et al. Anomalous upconversion amplification induced by surface reconstruction in lanthanide sublattices [J]. Nat. Photonics, 2021, 15(10): 732-737. doi: 10.1038/s41566-021-00862-3http://dx.doi.org/10.1038/s41566-021-00862-3
WANG F, DENG R R, WANG J, et al. Tuning upconversion through energy migration in core-shell nanoparticles [J]. Nat. Mater., 2011, 10(12): 968-973. doi: 10.1038/nmat3149http://dx.doi.org/10.1038/nmat3149
CHEN X, PENG D F, JU Q, et al. Photon upconversion in core-shell nanoparticles [J]. Chem. Soc. Rev., 2015, 44(6): 1318-1330. doi: 10.1039/c4cs00151fhttp://dx.doi.org/10.1039/c4cs00151f
ZUO J, SUN D P, TU L P, et al. Precisely tailoring upconversion dynamics via energy migration in core-shell nanostructures [J]. Angew. Chem. Int. Ed., 2018, 57(12): 3054-3058. doi: 10.1002/anie.201711606http://dx.doi.org/10.1002/anie.201711606
XUE B, WANG D, TU L P, et al. Ultrastrong absorption meets ultraweak absorption: unraveling the energy-dissipative routes for dye-sensitized upconversion luminescence [J]. J. Phys. Chem. Lett., 2018, 9(16): 4625-4631. doi: 10.1021/acs.jpclett.8b01931http://dx.doi.org/10.1021/acs.jpclett.8b01931
FENG Y S, LI Z, LI Q Q, et al. Internal OH- induced cascade quenching of upconversion luminescence in NaYF4∶Yb/Er nanocrystals [J]. Light Sci. Appl., 2021, 10(1): 105-1-10. doi: 10.1038/s41377-021-00550-5http://dx.doi.org/10.1038/s41377-021-00550-5
DENG R R, WANG J, CHEN R F, et al. Enabling Förster resonance energy transfer from large nanocrystals through energy migration [J]. J. Am. Chem. Soc., 2016, 138(49): 15972-15979. doi: 10.1021/jacs.6b09349http://dx.doi.org/10.1021/jacs.6b09349
0
浏览量
654
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构