浏览全部资源
扫码关注微信
1.国科大杭州高等研究院 物理与光电工程学院, 浙江 杭州 310024
2.中国科学院上海光学精密机械研究所 强场激光物理国家重点实验室, 上海 201800
[ "汪俊(1998-),男,江西景德镇人,硕士研究生,2017年于长春理工大学获得学士学位,主要从事新型光电材料的制备及微纳激光器件的研究。 E-mail:wangjun212@mails.ucas.ac.cn" ]
[ "周奉献(1999-),男,湖南湘西人,硕士研究生,2017年于北京理工大学获得学士学位,主要从事钙钛矿复合光电材料的制备与研究。 E-mail:zhoufengxian21@mails.ucas.ac.cn" ]
[ "胡智萍(1991-),女,河南新乡人,博士,副研究员,2018年于重庆大学获得博士学位,主要从事新型光电材料的制备及光电器件的研究。 E-mail: huzhiping@ucas.ac.cn" ]
[ "杜鹃(1980-),女,山东潍坊人,博士,研究员,博士生导师,2007年于中国科学院上海光学精密机械研究所获得博士学位,主要从事超短脉冲激光与功能材料相互作用(具体包括钙钛矿等纳米发光材料制备及器件)的研究。 E-mail: dujuan@mail.siom.ac.cn" ]
[ "冷雨欣(1975-),男,上海人,博士,研究员,博士生导师,2002年于中国科学院上海光学精密机械研究所获得博士学位,主要从事超强超短激光技术发展及其前沿重要应用等方面的研究。 E-mail: lengyuxin@siom.ac.cn" ]
收稿日期:2022-05-05,
修回日期:2022-05-23,
纸质出版日期:2022-11-05
移动端阅览
汪俊,周奉献,李骞等.准二维铅基钙钛矿微纳激光器[J].发光学报,2022,43(11):1645-1662.
WANG Jun,ZHOU Feng-xian,LI Qian,et al.Quasi-2D Lead Halide Perovskites for Micro- and Nanolasers[J].Chinese Journal of Luminescence,2022,43(11):1645-1662.
汪俊,周奉献,李骞等.准二维铅基钙钛矿微纳激光器[J].发光学报,2022,43(11):1645-1662. DOI: 10.37188/CJL.20220179.
WANG Jun,ZHOU Feng-xian,LI Qian,et al.Quasi-2D Lead Halide Perovskites for Micro- and Nanolasers[J].Chinese Journal of Luminescence,2022,43(11):1645-1662. DOI: 10.37188/CJL.20220179.
近年来,钙钛矿材料及器件由于其优异的光电特性取得了巨大的研究进展。特别是准二维卤化物钙钛矿材料,因其具有激子结合能大、激子‐光子强耦合和稳定性好等优点,在光电器件领域显示出很大的应用潜力。此外,准二维钙钛矿中自发形成的量子阱结构允许激子能量从小
n
相转移到大
n
相,能够有效促进激子利用率和粒子数反转,这使得准二维钙钛矿材料能够成为激光器中的光学增益介质。本文首先介绍了准二维钙钛矿的晶体结构和优异的光学性能,进而总结了调节准二维钙钛矿晶相结构的几种策略。最后,回顾了准二维钙钛矿微纳激光器的发展,并对准二维钙钛矿材料和激光器件的研究进行了总结和展望。
Perovskite materials and devices have obtained great progress due to their significant optoelectronic properties. Especially, quasi-two-dimensional(2D) halide perovskites have shown promising potential in optoelectronic devices due to their large exciton binding energy, strong exciton-photon coupling and enhanced stability. Moreover, the naturally quantum-well structure of 2D perovskite allows exciton energy transfer from the small-
n
phase to large-
n
phase, promoting exciton utilization and population inversion to achieve lasing as optical gain media. Herein, we will introduce the crystal structure and advanced optical properties of quasi-2D perovskite at first, and then summarize several strategies about regulating crystal orientation of quasi-2D perovskite. Finally, we will review the development of quasi-2D perovskite based micro- and nanolaser, and present a summary and prospect for quasi-2D perovskite materials and laser devices in the future.
CHEN W , SHI Y Q , WANG Y , et al . N-type conjugated polymer as efficient electron transport layer for planar inverted perovskite solar cells with power conversion efficiency of 20.86% [J]. Nano Energy , 2020 , 68 : 104363-1 - 10 . doi: 10.1016/j.nanoen.2019.104363 http://dx.doi.org/10.1016/j.nanoen.2019.104363
ZHU P C , GU S , LUO X , et al . Simultaneous contact and grain-boundary passivation in planar perovskite solar cells using SnO 2 -KCl composite electron transport layer [J]. Adv. Energy Mater. , 2020 , 10 ( 3 ): 1903083-1-7 . doi: 10.1002/aenm.201903083 http://dx.doi.org/10.1002/aenm.201903083
HUI W , YANG Y G , XU Q , et al . Red-carbon-quantum-dot-doped SnO 2 composite with enhanced electron mobility for efficient and stable perovskite solar cells [J]. Adv. Mater. , 2020 , 32 ( 4 ): 1906374-1-9 . doi: 10.1002/adma.201906374 http://dx.doi.org/10.1002/adma.201906374
RONG Y G , HU Y , MEI A Y , et al . Challenges for commercializing perovskite solar cells [J]. Science , 2018 , 361 ( 6408 ): eaa t8235 - 1 - 7 . doi: 10.1126/science.aat8235 http://dx.doi.org/10.1126/science.aat8235
GUAN H L , ZHAO S Y , WANG H X , et al . Room temperature synthesis of stable single silica-coated CsPbBr 3 quantum dots combining tunable red emission of Ag-In-Zn-S for high-CRI white light-emitting diodes [J]. Nano Energy , 2020 , 67 : 104279-1 - 9 . doi: 10.1016/j.nanoen.2019.104279 http://dx.doi.org/10.1016/j.nanoen.2019.104279
LIU Z Z , YANG J , DU J , et al . Robust subwavelength single-mode perovskite nanocuboid laser [J]. ACS Nano , 2018 , 12 ( 6 ): 5923 - 5931 . doi: 10.1021/acsnano.8b02143 http://dx.doi.org/10.1021/acsnano.8b02143
CAO Z L , HU F R , ZHANG C F , et al . Optical studies of semiconductor perovskite nanocrystals for classical optoelectronic applications and quantum information technologies: a review [J]. Adv. Photonics , 2020 , 2 ( 5 ): 054001-1-15 . doi: 10.1117/1.ap.2.5.054001 http://dx.doi.org/10.1117/1.ap.2.5.054001
WU T Z , LIN Y , HUANG Y M , et al . Highly stable full-color display device with VLC application potential using semipolar μLEDs and all-inorganic encapsulated perovskite nanocrystal [J]. Photonics Res. , 2021 , 9 ( 11 ): 2132 - 2143 . doi: 10.1364/prj.431095 http://dx.doi.org/10.1364/prj.431095
MO Q H , SHI T C , CAI W S , et al . Room temperature synthesis of stable silica-coated CsPbBr 3 quantum dots for amplified spontaneous emission [J]. Photonics Res. , 2020 , 8 ( 10 ): 1605 - 1612 . doi: 10.1364/prj.399845 http://dx.doi.org/10.1364/prj.399845
LI Y , LIANG C , WANG G P , et al . Two-step solvent post-treatment on PTAA for highly efficient and stable inverted perovskite solar cells [J]. Photonics Res. , 2020 , 8 ( 10 ): A39 - A49 . doi: 10.1364/prj.398529 http://dx.doi.org/10.1364/prj.398529
曾凡菊 , 谭永前 , 胡伟 , 等 . Ba 2+ 离子掺杂CsPbBr 3 蓝光量子点合成及其光学性能 [J]. 发光学报 , 2022 , 43 ( 1 ): 69 - 76 . doi: 10.37188/cjl.20210323 http://dx.doi.org/10.37188/cjl.20210323
ZENG F J , TAN Y Q , HU W , et al . Synthesis and optical properties of barium doped CsPbBr 3 blue luminescence quantum dots [J]. Chin. J. Lumin. , 2022 , 43 ( 1 ): 69 - 76 . (in Chinese) . doi: 10.37188/cjl.20210323 http://dx.doi.org/10.37188/cjl.20210323
杨洁 , 皮明雨 , 张丁可 , 等 . 低维钙钛矿光电探测器研究进展 [J]. 发光学报 , 2021 , 42 ( 6 ): 755 - 773 . doi: 10.37188/CJL.20210033 http://dx.doi.org/10.37188/CJL.20210033
YANG J , PI M Y , ZHANG D K , et al . Recent progress on low-dimensional perovskite photodetectors [J]. Chin. J. Lumin. , 2021 , 42 ( 6 ): 755 - 773 . (in Chinese) . doi: 10.37188/CJL.20210033 http://dx.doi.org/10.37188/CJL.20210033
ZHAO Y , MA F , GAO F , et al . Research progress in large-area perovskite solar cells [J]. Photonics Res. , 2020 , 8 ( 7 ): A1 - A15 . doi: 10.1364/prj.392996 http://dx.doi.org/10.1364/prj.392996
LIU Y , CUI J Y , DU K , et al . Efficient blue light-emitting diodes based on quantum-confined bromide perovskite nanostructures [J]. Nat. Photonics , 2019 , 13 ( 11 ): 760 - 764 . doi: 10.1038/s41566-019-0505-4 http://dx.doi.org/10.1038/s41566-019-0505-4
VASHISHTHA P , NG M , SHIVARUDRAIAH S B , et al . High efficiency blue and green light-emitting diodes using Ruddlesden‐Popper inorganic mixed halide perovskites with butylammonium interlayers [J]. Chem. Mater. , 2019 , 31 ( 1 ): 83 - 89 .
WANG N N , CHENG L , GE R , et al . Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells [J]. Nat. Photonics , 2016 , 10 ( 11 ): 699 - 704 . doi: 10.1038/nphoton.2016.185 http://dx.doi.org/10.1038/nphoton.2016.185
LEE H D , KIM H , CHO H , et al . Efficient Ruddlesden‐Popper perovskite light-emitting diodes with randomly oriented nanocrystals [J]. Adv. Funct. Mater. , 2019 , 29 ( 27 ): 1901225-1-9 .
LA-PLACA M G , LONGO G , BABAEI A , et al . Photoluminescence quantum yield exceeding 80% in low dimensional perovskite thin-films via passivation control [J]. Chem. Commun. , 2017 , 53 ( 62 ): 8707 - 8710 . doi: 10.1039/c7cc04149g http://dx.doi.org/10.1039/c7cc04149g
YANG X L , ZHANG X W , DENG J X , et al . Efficient green light-emitting diodes based on quasi-two-dimensional composition and phase engineered perovskite with surface passivation [J]. Nat. Commun. , 2018 , 9 ( 1 ): 570-1-8 . doi: 10.1038/s41467-018-02978-7 http://dx.doi.org/10.1038/s41467-018-02978-7
MENG F Y , LIU X Y , CHEN Y X , et al . Co-interlayer engineering toward efficient green quasi-two-dimensional perovskite light-emitting diodes [J]. Adv. Funct. Mater. , 2020 , 30 ( 19 ): 1910167-1-9 . doi: 10.1002/adfm.201910167 http://dx.doi.org/10.1002/adfm.201910167
CHU Z M , YE Q F , ZHAO Y , et al . Perovskite light-emitting diodes with external quantum efficiency exceeding 22% via small-molecule passivation [J]. Adv. Mater. , 2021 , 33 ( 18 ): 2007169-1-9 . doi: 10.1002/adma.202007169 http://dx.doi.org/10.1002/adma.202007169
HU Z P , LIU Z Z , ZHAN Z J , et al . Advances in metal halide perovskite lasers: synthetic strategies, morphology control, and lasing emission [J]. Adv. Photonics , 2021 , 3 ( 3 ): 034002-1-23 . doi: 10.1117/1.ap.3.3.034002 http://dx.doi.org/10.1117/1.ap.3.3.034002
LEYDEN M R , TERAKAWA S , MATSUSHIMA T , et al . Distributed feedback lasers and light-emitting diodes using 1-naphthylmethylamnonium low-dimensional perovskite [J]. ACS Photonics , 2019 , 6 ( 2 ): 460 - 466 . doi: 10.1021/acsphotonics.8b01413 http://dx.doi.org/10.1021/acsphotonics.8b01413
WANG C H , DAI G , WANG J H , et al . Low-threshold blue quasi-2D perovskite laser through domain distribution control [J]. Nano Lett. , 2022 , 22 ( 3 ): 1338 - 1344 .
ZHANG H H , WU Y S , LIAO Q , et al . A two-dimensional Ruddlesden‐Popper perovskite nanowire laser array based on ultrafast light-harvesting quantum wells [J]. Angew. Chem. Int. Ed. , 2018 , 57 ( 26 ): 7748 - 7752 . doi: info:doi/10.1002/anie.201802515 http://dx.doi.org/info:doi/10.1002/anie.201802515
ZHAI W H , TIAN C , YUAN K , et al . Optically pumped lasing of segregated quasi-2D perovskite microcrystals in vertical microcavity at room temperature [J]. Appl. Phys. Lett. , 2019 , 114 ( 13 ): 131107-1-4 . doi: 10.1063/1.5090569 http://dx.doi.org/10.1063/1.5090569
DAS S , GHOLIPOUR S , SALIBA M . Perovskites for laser and detector applications [J]. Energy Environ. Mater. , 2019 , 2 ( 2 ): 146 - 153 . doi: 10.1002/eem2.12044 http://dx.doi.org/10.1002/eem2.12044
ZHANG S , ZHONG Y G , YANG F , et al . Cavity engineering of two-dimensional perovskites and inherent light-matter interaction [J]. Photonics Res. , 2020 , 8 ( 11 ): A72 - A90 . doi: 10.1364/prj.400259 http://dx.doi.org/10.1364/prj.400259
LIU Z Z , HU M C , DU J , et al . Subwavelength-polarized quasi-two-dimensional perovskite single-mode nanolaser [J]. ACS Nano , 2021 , 15 ( 4 ): 6900 - 6908 . doi: 10.1021/acsnano.0c10647 http://dx.doi.org/10.1021/acsnano.0c10647
SHANG Q Y , LI M L , ZHAO L Y , et al . Role of the exciton‐polariton in a continuous-wave optically pumped CsPbBr 3 perovskite laser [J]. Nano Lett. , 2020 , 20 ( 9 ): 6636 - 6643 .
FUJIWARA K , ZHANG S , TAKAHASHI S , et al . Excitation dynamics in layered lead halide perovskite crystal slabs and microcavities [J]. ACS Photonics , 2020 , 7 ( 3 ): 845 - 852 . doi: 10.1021/acsphotonics.0c00038 http://dx.doi.org/10.1021/acsphotonics.0c00038
BRENNER P , GLÖCKLER T , RUEDA-DELGADO D , et al . Triple cation mixed-halide perovskites for tunable lasers [J]. Opt. Mater. Express , 2017 , 7 ( 11 ): 4082 - 4094 . doi: 10.1364/ome.7.004082 http://dx.doi.org/10.1364/ome.7.004082
SUN W Z , LIU Y L , QU G Y , et al . Lead halide perovskite vortex microlasers [J]. Nat. Commun. , 2020 , 11 ( 1 ): 4862-1-7 . doi: 10.1038/s41467-020-18669-1 http://dx.doi.org/10.1038/s41467-020-18669-1
XING D , LIN C C , HO Y L , et al . Self-healing lithographic patterning of perovskite nanocrystals for large-area single-mode laser array [J]. Adv. Funct. Mater. , 2021 , 31 ( 1 ): 2006283-1-9 . doi: 10.1002/adfm.202006283 http://dx.doi.org/10.1002/adfm.202006283
TIAN C , ZHAO S Q , GUO T , et al . Deep-blue DBR laser at room temperature from single-crystalline perovskite thin film [J]. Opt. Mater. , 2020 , 107 : 110130-1 - 5 . doi: 10.1016/j.optmat.2020.110130 http://dx.doi.org/10.1016/j.optmat.2020.110130
REN M , CAO S , ZHAO J L , et al . Advances and challenges in two-dimensional organic-inorganic hybrid perovskites toward high-performance light-emitting diodes [J]. Nanomicro Lett. , 2021 , 13 ( 1 ): 163-1-36 . doi: 10.1007/S40820-021-00685-5 http://dx.doi.org/10.1007/S40820-021-00685-5
GHIMIRE S , KLINKE C . Two-dimensional halide perovskites: synthesis, optoelectronic properties, stability, and applications [J]. Nanoscale , 2021 , 13 ( 29 ): 12394 - 12422 . doi: 10.1039/d1nr02769g http://dx.doi.org/10.1039/d1nr02769g
SAPAROV B , MITZI D B . Organic-inorganic perovskites: structural versatility for functional materials design [J]. Chem. Rev. , 2016 , 116 ( 7 ): 4558 - 4596 . doi: 10.1021/acs.chemrev.5b00715 http://dx.doi.org/10.1021/acs.chemrev.5b00715
MA S , CAI M L , CHENG T , et al . Two-dimensional organic-inorganic hybrid perovskite: from material properties to device applications [J]. Sci. China Mater. , 2018 , 61 ( 10 ): 1257 - 1277 . doi: 10.1007/s40843-018-9294-5 http://dx.doi.org/10.1007/s40843-018-9294-5
HU T , SMITH M D , DOHNER E R , et al . Mechanism for broadband white-light emission from two-dimensional (110) hybrid perovskites [J]. J. Phys. Chem. Lett. , 2016 , 7 ( 12 ): 2258 - 2263 . doi: 10.1021/acs.jpclett.6b00793 http://dx.doi.org/10.1021/acs.jpclett.6b00793
ORTIZ-CERVANTES C , CARMONA-MONROY P , SOLIS-IBARRA D . Two-dimensional halide perovskites in solar cells: 2D or not 2D? [J]. ChemSusChem , 2019 , 12 ( 8 ): 1560 - 1575 . doi: 10.1002/cssc.201802992 http://dx.doi.org/10.1002/cssc.201802992
MCCALL K M , LIU Z F , TRIMARCHI G , et al . α-particle detection and charge transport characteristics in the A 3 M 2 I 9 defect perovskites( A = Cs, Rb; M = Bi, Sb) [J]. ACS Photonics , 2018 , 5 ( 9 ): 3748 - 3762 . doi: 10.1021/acsphotonics.8b00813 http://dx.doi.org/10.1021/acsphotonics.8b00813
KARUPPUSWAMY P , BOOPATHI K M , MOHAPATRA A , et al . Role of a hydrophobic scaffold in controlling the crystallization of methylammonium antimony iodide for efficient lead-free perovskite solar cells [J]. Nano Energy , 2018 , 45 : 330 - 336 . doi: 10.1016/j.nanoen.2017.12.051 http://dx.doi.org/10.1016/j.nanoen.2017.12.051
UZURANO G , KUWAHARA N , SAITO T , et al . Orientation control of 2D perovskite in 2D/3D heterostructure by templated growth on 3D perovskite [J]. ACS Mater. Lett. , 2022 , 4 ( 2 ): 378 - 384 . doi: 10.1021/acsmaterialslett.1c00709 http://dx.doi.org/10.1021/acsmaterialslett.1c00709
LIU P R , YU S W , XIAO S J . Research progress on two-dimensional(2D) halide organic-inorganic hybrid perovskites [J]. Sustainable Energy Fuels , 2021 , 5 ( 16 ): 3950 - 3978 . doi: 10.1039/d1se00589h http://dx.doi.org/10.1039/d1se00589h
CAO D H , STOUMPOS C C , FARHA O K , et al . 2D homologous perovskites as light-absorbing materials for solar cell applications [J]. J. Am. Chem. Soc. , 2015 , 137 ( 24 ): 7843 - 7850 . doi: 10.1021/jacs.5b03796 http://dx.doi.org/10.1021/jacs.5b03796
SMITH I C , HOKE E T , SOLIS-IBARRA D , et al . A layered hybrid perovskite solar-cell absorber with enhanced moisture stability [J]. Angew. Chem. Int. Ed. , 2014 , 53 ( 42 ): 11232 - 11235 . doi: 10.1002/anie.201406466 http://dx.doi.org/10.1002/anie.201406466
PARITMONGKOL W , DAHOD N S , STOLLMANN A , et al . Synthetic variation and structural trends in layered two-dimensional alkylammonium lead halide perovskites [J]. Chem. Mater. , 2019 , 31 ( 15 ): 5592 - 5607 . doi: 10.1021/acs.chemmater.9b01318 http://dx.doi.org/10.1021/acs.chemmater.9b01318
AHMAD S , FU P , YU S W , et al . Dion-Jacobson phase 2D layered perovskites for solar cells with ultrahigh stability [J]. Joule , 2019 , 3 ( 3 ): 794 - 806 . doi: 10.1016/j.joule.2018.11.026 http://dx.doi.org/10.1016/j.joule.2018.11.026
MAO L L , KE W J , PEDESSEAU L , et al . Hybrid Dion-Jacobson 2D lead iodide perovskites [J]. J. Am. Chem. Soc. , 2018 , 140 ( 10 ): 3775 - 3783 . doi: 10.1021/jacs.8b00542 http://dx.doi.org/10.1021/jacs.8b00542
NAZARENKO O , KOTYRBA M R , WÖRLE M , et al . Luminescent and photoconductive layered lead halide perovskite compounds comprising mixtures of cesium and guanidinium cations [J]. Inorg. Chem. , 2017 , 56 ( 19 ): 11552 - 11564 . doi: 10.1021/acs.inorgchem.7b01204 http://dx.doi.org/10.1021/acs.inorgchem.7b01204
SOE C M M , STOUMPOS C C , KEPENEKIAN M , et al . New type of 2D perovskites with alternating cations in the interlayer space, (C(NH 2 ) 3 )(CH 3 NH 3 ) n Pb n I 3 n +1 : structure, properties, and photovoltaic performance [J]. J. Am. Chem. Soc. , 2017 , 139 ( 45 ): 16297 - 16309 .
HONG X , ISHIHARA T , NURMIKKO A V . Dielectric confinement effect on excitons in PbI 4 -based layered semiconductors [J]. Phys. Rev. B , 1992 , 45 ( 12 ): 6961 - 6964 . doi: 10.1103/physrevb.45.6961 http://dx.doi.org/10.1103/physrevb.45.6961
GUO Z , WU X X , ZHU T , et al . Electron-phonon scattering in atomically thin 2D perovskites [J]. ACS Nano , 2016 , 10 ( 11 ): 9992 - 9998 . doi: 10.1021/acsnano.6b04265 http://dx.doi.org/10.1021/acsnano.6b04265
DAMMAK T , KOUBAA M , BOUKHEDDADEN K , et al . Two-dimensional excitons and photoluminescence properties of the organic/inorganic (4-FC 6 H 4 C 2 H 4 NH 3 ) 2 [PbI 4 ] nanomaterial [J]. J. Phys. Chem. C , 2009 , 113 ( 44 ): 19305 - 19309 . doi: 10.1021/jp9057934 http://dx.doi.org/10.1021/jp9057934
TRAORE B , PEDESSEAU L , ASSAM L , et al . Composite nature of layered hybrid perovskites: assessment on quantum and dielectric confinements and band alignment [J]. ACS Nano , 2018 , 12 ( 4 ): 3321 - 3332 . doi: 10.1021/acsnano.7b08202 http://dx.doi.org/10.1021/acsnano.7b08202
ZIBOUCHE N , ISLAM M S . Structure-electronic property relationships of 2D Ruddlesden‐Popper tin- and lead-based iodide perovskites [J]. ACS Appl. Mater. Interfaces , 2020 , 12 ( 13 ): 15328 - 15337 .
WANG K , WU C C , YANG D , et al . Quasi-two-dimensional halide perovskite single crystal photodetector [J]. ACS Nano , 2018 , 12 ( 5 ): 4919 - 4929 . doi: 10.1021/acsnano.8b01999 http://dx.doi.org/10.1021/acsnano.8b01999
SICHERT J A , TONG Y , MUTZ N , et al . Quantum size effect in organometal halide perovskite nanoplatelets [J]. Nano Lett. , 2015 , 15 ( 10 ): 6521 - 6527 . doi: 10.1021/acs.nanolett.5b02985 http://dx.doi.org/10.1021/acs.nanolett.5b02985
LIU J X , LENG J , WU K F , et al . Observation of internal photoinduced electron and hole separation in hybrid two-dimentional perovskite films [J]. J. Am. Chem. Soc. , 2017 , 139 ( 4 ): 1432 - 1435 . doi: 10.1021/jacs.6b12581 http://dx.doi.org/10.1021/jacs.6b12581
LI M L , GAO Q G , LIU P , et al . Amplified spontaneous emission based on 2D Ruddlesden-Popper perovskites [J]. Adv. Funct. Mater. , 2018 , 28 ( 17 ): 1707006-1-9 .
ZHANG H H , LIAO Q , WU Y S , et al . 2D Ruddlesden-Popper perovskites microring laser array [J]. Adv. Mater. , 2018 , 30 ( 15 ): 1706186-1-8 .
BLANCON J C , TSAI H , NIE W , et al . Extremely efficient internal exciton dissociation through edge states in layered 2D perovskites [J]. Science , 2017 , 355 ( 6331 ): 1288 - 1292 . doi: 10.1126/science.aal4211 http://dx.doi.org/10.1126/science.aal4211
EVEN J , PEDESSEAU L , KATAN C . Understanding quantum confinement of charge carriers in layered 2D hybrid perovskites [J]. ChemPhysChem , 2014 , 15 ( 17 ): 3733 - 3741 . doi: 10.1002/cphc.201402428 http://dx.doi.org/10.1002/cphc.201402428
GUO P J , HUANG W , STOUMPOS C C , et al . Hyperbolic dispersion arising from anisotropic excitons in two-dimensional perovskites [J]. Phys. Rev. Lett. , 2018 , 121 ( 12 ): 127401-1-6 . doi: 10.1103/physrevlett.121.127401 http://dx.doi.org/10.1103/physrevlett.121.127401
FANG C , XU M , MA J Q , et al . Large optical anisotropy in two-dimensional perovskite [CH(NH 2 ) 2 ][C(NH 2 ) 3 ] PbI 4 with corrugated inorganic layers [J]. Nano Lett. , 2020 , 20 ( 4 ): 2339 - 2347 . doi: 10.1021/acs.nanolett.9b04777 http://dx.doi.org/10.1021/acs.nanolett.9b04777
SPANOPOULOS I , HADAR I , KE W J , et al . Uniaxial expansion of the 2D Ruddlesden‐Popper perovskite family for improved environmental stability [J]. J. Am. Chem. Soc. , 2019 , 141 ( 13 ): 5518 - 5534 . doi: 10.1021/jacs.9b01327 http://dx.doi.org/10.1021/jacs.9b01327
RAGHAVAN C M , CHEN T P , LI S S , et al . Low-threshold lasing from 2D homologous organic-inorganic hybrid Ruddlesden‐Popper perovskite single crystals [J]. Nano Lett. , 2018 , 18 ( 5 ): 3221 - 3228 .
XIAO X , DAI J , FANG Y J , et al . Suppressed ion migration along the in-plane direction in layered perovskites [J]. ACS Energy Lett. , 2018 , 3 ( 3 ): 684 - 688 . doi: 10.1021/acsenergylett.8b00047 http://dx.doi.org/10.1021/acsenergylett.8b00047
ZHENG H Y , LIU G Z , ZHU L Z , et al . The effect of hydrophobicity of ammonium salts on stability of quasi-2D perovskite materials in moist condition [J]. Adv. Energy Mater. , 2018 , 8 ( 21 ): 1800051-1-8 . doi: 10.1002/aenm.201800051 http://dx.doi.org/10.1002/aenm.201800051
LIN Y , BAI Y , FANG Y J , et al . Enhanced thermal stability in perovskite solar cells by assembling 2D/3D stacking structures [J]. J. Phys. Chem. Lett. , 2018 , 9 ( 3 ): 654 - 658 . doi: 10.1021/acs.jpclett.7b02679 http://dx.doi.org/10.1021/acs.jpclett.7b02679
HAN T H , LEE J W , CHOI Y J , et al . Surface-2D/bulk-3D heterophased perovskite nanograins for long-term-stable light-emitting diodes [J]. Adv. Mater. , 2020 , 32 ( 1 ): 1905674-1-10 . doi: 10.1002/adma.202070007 http://dx.doi.org/10.1002/adma.202070007
CHO J , DUBOSE J T , LE A N T , et al . Suppressed halide ion migration in 2D lead halide perovskites [J]. ACS Mater. Lett. , 2020 , 2 ( 6 ): 565 - 570 . doi: 10.1021/acsmaterialslett.0c00124 http://dx.doi.org/10.1021/acsmaterialslett.0c00124
HUANG Z R , PROPPE A H , TAN H R , et al . Suppressed ion migration in reduced-dimensional perovskites improves operating stability [J]. ACS Energy Lett. , 2019 , 4 ( 7 ): 1521 - 1527 . doi: 10.1021/acsenergylett.9b00892 http://dx.doi.org/10.1021/acsenergylett.9b00892
ZHANG F , LU H P , TONG J H , et al . Advances in two-dimensional organic-inorganic hybrid perovskites [J]. Energy Environ. Sci. , 2020 , 13 ( 4 ): 1154 - 1186 . doi: 10.1039/c9ee03757h http://dx.doi.org/10.1039/c9ee03757h
ZHAO R Y , SABATINI R P , ZHU T , et al . Rigid conjugated diamine templates for stable Dion-Jacobson-type two-dimensional perovskites [J]. J. Am. Chem. Soc. , 2021 , 143 ( 47 ): 19901 - 19908 . doi: 10.1021/jacs.1c09515 http://dx.doi.org/10.1021/jacs.1c09515
ZHANG Q , DUAN J , GUO Q , et al . Thermal-triggered dynamic disulfide bond self-heals inorganic perovskite solar cells [J]. Angew. Chem. Int. Ed. , 2022 , 61 ( 8 ): e202116632 . doi: 10.1002/anie.202116632 http://dx.doi.org/10.1002/anie.202116632
CAO D H , STOUMPOS C C , YOKOYAMA T , et al . Thin films and solar cells based on semiconducting two-dimensional Ruddlesden‐Popper (CH 3 (CH 2 ) 3 NH 3 ) 2 (CH 3 NH 3 ) n -1 Sn n I 3 n +1 perovskites [J]. ACS Energy Lett. , 2017 , 2 ( 5 ): 982 - 990 . doi: 10.1021/acsenergylett.7b00202 http://dx.doi.org/10.1021/acsenergylett.7b00202
CHENG G Q , WANG J , YANG R , et al . Tuning crystal orientation and charge transport of quasi-2D perovskites via halogen-substituted benzylammonium for efficient solar cells [J]. J. Energy Chem. , 2022 , 66 : 205 - 209 . doi: 10.1016/j.jechem.2021.07.033 http://dx.doi.org/10.1016/j.jechem.2021.07.033
ZHAO F Y , REN A B , LI P H , et al . Toward continuous-wave pumped metal halide perovskite lasers: strategies and challenges [J]. ACS Nano , 2022 , 16 ( 5 ): 7116 - 7143 . doi: 10.1021/acsnano.1c11539 http://dx.doi.org/10.1021/acsnano.1c11539
SONG J N , ZHOU G Q , CHEN W , et al . Unraveling the crystallization kinetics of 2D perovskites with sandwich-type structure for high-performance photovoltaics [J]. Adv. Mater. , 2020 , 32 ( 36 ): 2002784-1-10 .
XU Y K , WANG M , LEI Y T , et al . Crystallization kinetics in 2D perovskite solar cells [J]. Adv. Energy Mater. , 2020 , 10 ( 43 ): 2002558-1-18 . doi: 10.1002/aenm.202002558 http://dx.doi.org/10.1002/aenm.202002558
ZHANG J J , ZHANG L Y , LI X H , et al . Binary solvent engineering for high-performance two-dimensional perovskite solar cells [J]. ACS Sustainable Chem. Eng. , 2019 , 7 ( 3 ): 3487 - 3495 . doi: 10.1021/acssuschemeng.8b05734 http://dx.doi.org/10.1021/acssuschemeng.8b05734
HAMILL J C JR , SCHWARTZ J , LOO Y L . Influence of solvent coordination on hybrid organic-inorganic perovskite formation [J]. ACS Energy Lett. , 2018 , 3 ( 1 ): 92 - 97 . doi: 10.1021/acsenergylett.7b01057 http://dx.doi.org/10.1021/acsenergylett.7b01057
QIU J , XIA Y D , CHEN Y H , et al . Management of crystallization kinetics for efficient and stable low-dimensional Ruddlesden‐Popper(LDRP) lead-free perovskite solar cells [J]. Adv. Sci. , 2019 , 6 ( 1 ): 1800793-1-7 .
YANG D , YANG R X , REN X D , et al . Hysteresis-suppressed high-efficiency flexible perovskite solar cells using solid-state ionic-liquids for effective electron transport [J]. Adv. Mater. , 2016 , 28 ( 26 ): 5206 - 5213 . doi: 10.1002/adma.201600446 http://dx.doi.org/10.1002/adma.201600446
PENG X F , YANG X H , LIU D T , et al . Targeted distribution of passivator for polycrystalline perovskite light-emitting diodes with high efficiency [J]. ACS Energy Lett. , 2021 , 6 ( 12 ): 4187 - 4194 . doi: 10.1021/acsenergylett.1c01753 http://dx.doi.org/10.1021/acsenergylett.1c01753
LIU Z , QIU W D , PENG X M , et al . Perovskite light-emitting diodes with EQE exceeding 28% through a synergetic dual-additive strategy for defect passivation and nanostructure regulation [J]. Adv. Mater. , 2021 , 33 ( 43 ): 2103268-1-9 . doi: 10.1002/adma.202103268 http://dx.doi.org/10.1002/adma.202103268
ZHANG X Q , WU G , YANG S D , et al . Vertically oriented 2D layered perovskite solar cells with enhanced efficiency and good stability [J]. Small , 2017 , 13 ( 33 ): 1700611-1-8 . doi: 10.1002/smll.201700611 http://dx.doi.org/10.1002/smll.201700611
LI Z M , LIU N , MENG K , et al . A new organic interlayer spacer for stable and efficient 2D Ruddlesden-Popper perovskite solar cells [J]. Nano Lett. , 2019 , 19 ( 8 ): 5237 - 5245 . doi: 10.1021/acs.nanolett.9b01652 http://dx.doi.org/10.1021/acs.nanolett.9b01652
HUANG F , SIFFALOVIC P , LI B , et al . Controlled crystallinity and morphologies of 2D Ruddlesden-Popper perovskite films grown without anti-solvent for solar cells [J]. Chem. Eng. J. , 2020 , 394 : 124959-1 - 8 . doi: 10.1016/j.cej.2020.124959 http://dx.doi.org/10.1016/j.cej.2020.124959
FU W F , WANG J , ZUO L J , et al . Two-dimensional perovskite solar cells with 14.1% power conversion efficiency and 0.68% external radiative efficiency [J]. ACS Energy Lett. , 2018 , 3 ( 9 ): 2086 - 2093 . doi: 10.1021/acsenergylett.8b01181 http://dx.doi.org/10.1021/acsenergylett.8b01181
WANG J F , LUO S Q , LIN Y , et al . Templated growth of oriented layered hybrid perovskites on 3D-like perovskites [J]. Nat. Commun. , 2020 , 11 ( 1 ): 582-1-9 . doi: 10.1038/s41467-019-13856-1 http://dx.doi.org/10.1038/s41467-019-13856-1
TSAI H , NIE W Y , BLANCON J C , et al . High-efficiency two-dimensional Ruddlesden-Popper perovskite solar cells [J]. Nature , 2016 , 536 ( 7616 ): 312 - 316 . doi: 10.1038/nature18306 http://dx.doi.org/10.1038/nature18306
YANG B , WANG M , HU X F , et al . Highly efficient semitransparent CsPbIBr 2 perovskite solar cells via low-temperature processed In 2 S 3 as electron-transport-layer [J]. Nano Energy , 2019 , 57 : 718 - 727 . doi: 10.1016/j.nanoen.2018.12.097 http://dx.doi.org/10.1016/j.nanoen.2018.12.097
LUO C , ZHENG G H J , GAO F , et al . Facet orientation tailoring via 2D-seed-induced growth enables highly efficient and stable perovskite solar cells [J]. Joule , 2022 , 6 ( 1 ): 240 - 257 . doi: 10.1016/j.joule.2021.12.006 http://dx.doi.org/10.1016/j.joule.2021.12.006
ZHAO C Y , QIN C J . Quasi-2D lead halide perovskite gain materials toward electrical pumping laser [J]. Nanophotonics , 2020 , 10 ( 8 ): 2167 - 2180 . doi: 10.1515/nanoph-2020-0630 http://dx.doi.org/10.1515/nanoph-2020-0630
LI J Z , ZHANG L , CHU Z M , et al . Amplified spontaneous emission with a low threshold from quasi-2D perovskite films via phase engineering and surface passivation [J]. Adv. Opt. Mater. , 2022 , 10 ( 6 ): 2102563-1-9 . doi: 10.1002/adom.202102563 http://dx.doi.org/10.1002/adom.202102563
ROY P K , ULAGANATHAN R K , RAGHAVAN C M , et al . Unprecedented random lasing in 2D organolead halide single-crystalline perovskite microrods [J]. Nanoscale , 2020 , 12 ( 35 ): 18269 - 18277 . doi: 10.1039/d0nr01171a http://dx.doi.org/10.1039/d0nr01171a
LIANG Y , SHANG Q Y , WEI Q , et al . Lasing from mechanically exfoliated 2D homologous Ruddlesden-Popper perovskite engineered by inorganic layer thickness [J]. Adv. Mater. , 2019 , 31 ( 39 ): 1903030-1-8 . doi: 10.1002/adma.201903030 http://dx.doi.org/10.1002/adma.201903030
ZHANG H B , HU Y Z , WEN W , et al . Room-temperature continuous-wave vertical-cavity surface-emitting lasers based on 2D layered organic-inorganic hybrid perovskites [J]. APL Mater. , 2021 , 9 ( 7 ): 071106-1-8 . doi: 10.1063/5.0052458 http://dx.doi.org/10.1063/5.0052458
BOOKER E P , PRICE M B , BUDDEN P J , et al . Vertical cavity biexciton lasing in 2D dodecylammonium lead iodide perovskites [J]. Adv. Opt. Mater. , 2018 , 6 ( 21 ): 1800616-1-5 . doi: 10.1002/adom.201800616 http://dx.doi.org/10.1002/adom.201800616
LI Y , ROGER J , ALLEGRO I , et al . Lasing from laminated quasi-2D/3D perovskite planar heterostructures [J]. Adv. Funct. Mater. , 2022 , 32 ( 27 ): 2200772-1-8 . doi: 10.1002/adfm.202200772 http://dx.doi.org/10.1002/adfm.202200772
JIA Y F , KERNER R A , GREDE A J , et al . Continuous-wave lasing in an organic-inorganic lead halide perovskite semiconductor [J]. Nat. Photonics , 2017 , 11 ( 12 ): 784 - 788 . doi: 10.1038/s41566-017-0047-6 http://dx.doi.org/10.1038/s41566-017-0047-6
BRENNER P , BAR-ON O , JAKOBY M , et al . Continuous wave amplified spontaneous emission in phase-stable lead halide perovskites [J]. Nat. Commun. , 2019 , 10 ( 1 ): 988-1-7 . doi: 10.1038/s41467-019-08929-0 http://dx.doi.org/10.1038/s41467-019-08929-0
HSIEH Y H , HSU B W , PENG K N , et al . Perovskite quantum dot lasing in a gap-plasmon nanocavity with ultralow threshold [J]. ACS Nano , 2020 , 14 ( 9 ): 11670 - 11676 . doi: 10.1021/acsnano.0c04224 http://dx.doi.org/10.1021/acsnano.0c04224
QIN C J , SANDANAYAKA A S D , ZHAO C Y , et al . Stable room-temperature continuous-wave lasing in quasi-2D perovskite films [J]. Nature , 2020 , 585 ( 7823 ): 53 - 57 . doi: 10.1038/s41586-020-2621-1 http://dx.doi.org/10.1038/s41586-020-2621-1
0
浏览量
771
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构