浏览全部资源
扫码关注微信
1.广东省晶体与激光技术工程研究中心, 广东 广州 510632
2.暨南大学理工学院 光电工程系, 广东 广州 510632
[ "谭慧瑜(1997-),女,广东开平人,硕士研究生,2020年于广东技术师范大学获得学士学位,主要从事激光与光电功能晶体材料的研究。 E-mail: thy@stu2020.jnu.edu.cn" ]
[ "张沛雄(1987-),男,广东潮州人,博士,副研究员,2016年于中国科学院上海光学精密机械研究所获得博士学位,主要从事激光与光电功能晶体材料的研究。" ]
纸质出版日期:2022-11-05,
收稿日期:2022-04-29,
修回日期:2022-05-19,
扫 描 看 全 文
谭慧瑜,张沛雄,牛晓晨等.可见光激光晶体Sm3+∶CaDyAlO4的光学性能[J].发光学报,2022,43(11):1741-1749.
TAN Hui-yu,ZHANG Pei-xiong,NIU Xiao-chen,et al.Optical Properties of Visible Laser Crystal Sm3+∶CaDyAlO4[J].Chinese Journal of Luminescence,2022,43(11):1741-1749.
谭慧瑜,张沛雄,牛晓晨等.可见光激光晶体Sm3+∶CaDyAlO4的光学性能[J].发光学报,2022,43(11):1741-1749. DOI: 10.37188/CJL.20220164.
TAN Hui-yu,ZHANG Pei-xiong,NIU Xiao-chen,et al.Optical Properties of Visible Laser Crystal Sm3+∶CaDyAlO4[J].Chinese Journal of Luminescence,2022,43(11):1741-1749. DOI: 10.37188/CJL.20220164.
采用提拉法成功地生长了Sm
3+
掺杂CaDyAlO
4
晶体,并对其可见光光学性能进行研究,利用Judd‑Ofelt理论,得到强度参数、自发辐射概率及荧光分支比等重要的光谱性能参数。该晶体在353 nm处吸收峰最强,半高宽(FWHM)为13 nm,吸收截面为1.11×10
-20
cm
2
;在353 nm激发下,获得了500~650 nm的超宽带橙黄光发射,Dy
3+
离子和Sm
3+
离子的主要发射峰分别位于570 nm和620 nm处,发射截面分别为4.15×10
-20
cm
2
和4.03×10
-20
cm
2
。上述结果表明,Sm
3+
∶CaDyAlO
4
晶体可能是500~650 nm橙黄色调谐激光器的一种有前景的增益材料。
The Czochralski method was used to successfully grow the Sm
3+
-doped CaDyAlO
4
crystal, and its optical properties in visible light were investigated. Important spectral performance parameters such as intensity parameters, spontaneous emission probability, and fluorescence branching ratio were obtained using the Judd-Ofelt theory. The crystal has a strong absorption peak at 353 nm, a full width at half maximum(FWHM) of 13 nm, and an absorption cross section of 9.76×10
-20
cm
2
. When excited at 353 nm, an ultra-broadband orange-yellow emission from 500 nm to 650 nm is obtained, with Dy
3+
ions and Sm
3+
ions. The main emission peaks of Dy
3+
ions and Sm
3+
ions are at 570 nm and 620 nm, respectively, and the emission cross sections are 4.15×10
-20
cm
2
and 4.03×10
-20
cm
2
, respectively. The above findings suggest that Sm
3+
∶CaDyAlO
4
crystals could be a promising gain material for orange-yellow tunable lasers from 500 nm to 650 nm.
激光晶体Sm3+掺杂Judd-Ofelt理论橙黄光发射
laser crystalSm3+-dopedJudd-Ofelt theoryorange-yellow emission
HIGUCHI M, SASAKI R, TAKAHASHI J, et al. Float zone growth of Dy∶GdVO4 single crystals for potential use in solid-state yellow lasers [J]. J. Cryst. Growth, 2009, 311(21): 4549-4552. doi: 10.1016/j.jcrysgro.2009.08.028http://dx.doi.org/10.1016/j.jcrysgro.2009.08.028
XU B, LIU Z, XU H, et al. Highly efficient InGaN-LD-pumped bulk Pr∶YLF orange laser at 607 nm [J]. Opt. Commun., 2013, 305: 96-99. doi: 10.1016/j.optcom.2013.05.002http://dx.doi.org/10.1016/j.optcom.2013.05.002
STARECKI F, BOLAÑOS W, BRAUD A, et al. Red and orange Pr3+∶LiYF4 planar waveguide laser [J]. Opt. Lett., 2013, 38(4): 455-457. doi: 10.1364/ol.38.000455http://dx.doi.org/10.1364/ol.38.000455
CHOGE D K, CHEN H X, GUO L, et al. Double-pass high-efficiency sum-frequency generation of a broadband orange laser in a single MgO∶PPLN crystal [J]. Opt. Mater. Express, 2019, 9(2): 837-844. doi: 10.1364/ome.9.000837http://dx.doi.org/10.1364/ome.9.000837
CAVALLI E, BOVERO E, BELLETTI A, et al. Optical spectroscopy of CaMoO4∶Dy3+ single crystals [J]. J. Phys. Condens. Matter, 2002, 14(20): 5221-5228. doi: 10.1088/0953-8984/14/20/317http://dx.doi.org/10.1088/0953-8984/14/20/317
GRANADOS E, PASK H M, SPENCE D J, et al. Synchronously pumped continuous-wave mode-locked yellow Raman laser at 559 nm [J]. Opt. Express, 2009, 17(2): 569-574. doi: 10.1364/oe.17.000569http://dx.doi.org/10.1364/oe.17.000569
LIANG F, YANG J, ZHAO D G, et al. Room-temperature continuous-wave operation of GaN-based blue-violet laser diodes with a lifetime longer than 1 000 h [J]. J. Semicond., 2019, 40(2): 022801-1-4. doi: 10.1088/1674-4926/40/2/022801http://dx.doi.org/10.1088/1674-4926/40/2/022801
WANG Z Y, WANG Y Q, SUN Y J, et al. Polarized spectral properties of Sm3+∶CaYAlO4 crystal [J]. Opt. Mater., 2021, 115: 111066-1-6. doi: 10.1016/j.optmat.2021.111066http://dx.doi.org/10.1016/j.optmat.2021.111066
熊建辉, 王昊宇, 杨晨乐, 等. K2LaBr5∶Pr晶体的生长及发光性能研究 [J]. 人工晶体学报, 2021, 50(8): 1402-1407.
XIONG J H, WANG H Y, YANG C L, et al. Growth and luminescence properties of K2LaBr5∶Pr crystal [J]. J. Synth. Cryst., 2021, 50(8): 1402-1407. (in Chinese)
赖昌, 王广川. YAlO3晶体中Pr3+的4f2能级 [J]. 发光学报, 2011, 32(9): 885-889. doi: 10.3788/fgxb20113209.0885http://dx.doi.org/10.3788/fgxb20113209.0885
LAI C, WANG G C. The 4f2 energy levels of Pr3+ doped YAlO3 crystal [J]. Chin. J. Lumin., 2011, 32(9): 885-889. (in Chinese). doi: 10.3788/fgxb20113209.0885http://dx.doi.org/10.3788/fgxb20113209.0885
时秋峰, 王磊, 郭海洁, 等. 真空紫外光及X射线激发下Pr3+掺杂Ba3La(PO4)3发光性质 [J]. 发光学报, 2021, 42(11): 1756-1762. doi: 10.37188/CJL.20210281http://dx.doi.org/10.37188/CJL.20210281
SHI Q F, WANG L, GUO H J, et al. Luminescence properties of Pr3+ doped in Ba3La(PO4)3 with vacuum ultraviolet and X-ray excitation [J]. Chin. J. Lumin., 2021, 42(11): 1756-1762. (in Chinese). doi: 10.37188/CJL.20210281http://dx.doi.org/10.37188/CJL.20210281
KAMINSKII A A. Laser crystals and ceramics: recent advances [J]. Laser Photonics Rev., 2007, 1(2): 93-177. doi: 10.1002/lpor.200710008http://dx.doi.org/10.1002/lpor.200710008
LIU W P, ZHANG Q L, SUN D L, et al. Crystal growth and spectral properties of Sm∶GGG crystal [J]. J. Cryst. Growth, 2011, 331(1): 83-86. doi: 10.1016/j.jcrysgro.2011.07.023http://dx.doi.org/10.1016/j.jcrysgro.2011.07.023
XU X D, HU Z W, LI R J, et al. Polarized spectral properties of Sm∶CaGdAlO4 crystal for reddish-orange laser [J]. Opt. Mater., 2017, 69: 333-338. doi: 10.1016/j.optmat.2017.04.046http://dx.doi.org/10.1016/j.optmat.2017.04.046
徐杰, 宋青松, 刘坚, 等. Sm∶YAG/Sm∶Y3ScAl4O12单晶光纤的生长及光谱性能 [J]. 人工晶体学报, 2021, 50(7): 1391-1396. doi: 10.3969/j.issn.1000-985X.2021.07.020http://dx.doi.org/10.3969/j.issn.1000-985X.2021.07.020
XU J, SONG Q S, LIU J, et al. Growth and spectral properties of Sm3+-doped YAG and Y3ScAl4O12 single crystal fibers [J]. J. Synth. Cryst., 2021, 50(7): 1391-1396. (in Chinese). doi: 10.3969/j.issn.1000-985X.2021.07.020http://dx.doi.org/10.3969/j.issn.1000-985X.2021.07.020
KAZAKOV B N, ORLOV M S, PETROV M V, et al. Induced emission of Sm3+ ions in the visible region of the spectrum [J]. Opt. Spectrosc., 1979, 47(6): 676-677.
WANG Y Q, CHEN A X, TU C Y. Growth and polarized spectral properties of Sm3+ doped in Ca3La2(BO3)4 crystal [J]. Opt. Mater., 2015, 47: 561-565. doi: 10.1016/j.optmat.2015.06.043http://dx.doi.org/10.1016/j.optmat.2015.06.043
PUGH-THOMAS D. Spectroscopic properties and Judd‐Ofelt analysis of BaY2F8∶Sm3+ [J]. J. Opt. Soc. Am. B, 2014, 31(8): 1777-1785.
WANG G Q, LIN Y F, GONG X H, et al. Polarized spectral properties of Sm3+∶LiYF4 crystal [J]. J. Lumin., 2014, 147: 23-26. doi: 10.1016/j.jlumin.2013.10.058http://dx.doi.org/10.1016/j.jlumin.2013.10.058
LISIECKI R, RYBA-ROMANOWSKI W, SOLARZ P, et al. Effect of temperature on optical spectra and relaxation dynamics of Sm3+ in Gd3Ga5O12 single crystals [J]. J. Alloys Compd., 2014, 582: 208-212. doi: 10.1016/j.jallcom.2013.07.148http://dx.doi.org/10.1016/j.jallcom.2013.07.148
WOENSDREGT C F, JANSSEN H W M, GLOUBOKOV A, et al. Growth morphology of tetragonal ABCO4 compounds: theory and observations on Czochralski grown crystals [J]. J. Cryst. Growth, 1997, 171(3-4): 392-400. doi: 10.1016/s0022-0248(96)00700-2http://dx.doi.org/10.1016/s0022-0248(96)00700-2
PETIT J, GOLDNER P, VIANA B. Laser emission with low quantum defect in Yb∶CaGdAlO4 [J]. Opt. Lett., 2005, 30(11): 1345-1347. doi: 10.1364/ol.30.001345http://dx.doi.org/10.1364/ol.30.001345
SHANNON R D, OSWALD R A, PARISE J B, et al. Dielectric constants and crystal structures of CaYAlO4, CaNdAlO4, and SrLaAlO4, and deviations from the oxide additivity rule [J]. J. Solid State Chem., 1992, 98(1): 90-98. doi: 10.1016/0022-4596(92)90073-5http://dx.doi.org/10.1016/0022-4596(92)90073-5
CHEN G X, GE Y J, BI C Z, et al. Far-infrared optical properties of SrLaAlO4 single crystal [J]. J. Appl. Phys., 2004, 95(7): 3417-3421. doi: 10.1063/1.1652253http://dx.doi.org/10.1063/1.1652253
BERKOWSKI M, PAJACZKOWSKA A, GIERL/OWSKI P, et al. CaNdAlO4 perovskite substrate for microwave and far-infrared applications of epitaxial high Tc superconducting thin films [J]. Appl. Phys. Lett., 1990, 57(6): 632-634. doi: 10.1063/1.104250http://dx.doi.org/10.1063/1.104250
SÉVILLANO P, GEORGES P, DRUON F, et al. 32-fs Kerr-lens mode-locked Yb∶CaGdAlO4 oscillator optically pumped by a bright fiber laser [J]. Opt. Lett., 2014, 39(20): 6001-6004. doi: 10.1364/ol.39.006001http://dx.doi.org/10.1364/ol.39.006001
TAN W D, TANG D Y, XU X D, et al. Femtosecond and continuous-wave laser performance of a diode-pumped Yb3+∶CaYAlO4 laser [J]. Opt. Lett., 2011, 36(2): 259-261. doi: 10.1364/OL.36.000259http://dx.doi.org/10.1364/OL.36.000259
GUO F Y, XIE Q, QIU L Q, et al. Growth, magnetic and magneto-optical properties of CaDyAlO4 crystals [J]. Opt. Mater., 2021, 112: 110719-1-6. doi: 10.1016/j.optmat.2020.110719http://dx.doi.org/10.1016/j.optmat.2020.110719
BURTON J A, PRIM R C, SLICHTER W P, et al. The distribution of solute in crystals grown from the melt. Part I. Theoretical [J]. J. Chem. Phys., 1953, 21(11): 1987-1991. doi: 10.1063/1.1698728http://dx.doi.org/10.1063/1.1698728
LIU Q, XU J D, ZHANG P X, et al. Enhanced yellow emission of Sm3+ via Ce3+→ Sm3+ energy transfer in Gd0.1Y0.9AlO3 crystal [J]. J. Lumin., 2020, 227: 117533. doi: 10.1016/j.jlumin.2020.117533http://dx.doi.org/10.1016/j.jlumin.2020.117533
LIU J, SONG Q S, LI D Z, et al. Growth and red-orange emission of Sm3+ doped SrAl12O19 single crystals [J]. Opt. Mater., 2020, 101: 109754-1-5. doi: 10.1016/j.optmat.2020.109754http://dx.doi.org/10.1016/j.optmat.2020.109754
SHI J J, LIU B, WANG Q G, et al. Crystal growth, spectroscopic characteristics, and Judd-Ofelt analysis of Dy∶Lu2O3 for yellow laser [J]. Chin. Phys. B, 2018, 27(7): 077802-1-6. doi: 10.1088/1674-1056/27/7/077802http://dx.doi.org/10.1088/1674-1056/27/7/077802
PAN Y X, ZHOU S D, LI D Z, et al. Growth and optical properties of Dy∶Y3Al5O12 crystal [J]. Phys. B Condens. Matter, 2018, 530: 317-321. doi: 10.1016/j.physb.2017.12.001http://dx.doi.org/10.1016/j.physb.2017.12.001
JUDD B R. Optical absorption intensities of rare-earth ions [J]. Phys. Rev., 1962, 127(3): 750-761. doi: 10.1103/physrev.127.750http://dx.doi.org/10.1103/physrev.127.750
OFELT G S. Intensities of crystal spectra of rare-earth ions [J]. J. Chem. Phys., 1962, 37(3): 511-520. doi: 10.1063/1.1701366http://dx.doi.org/10.1063/1.1701366
KUSTOV E F, PETROV V P, PETROVA D S, et al. Absorption and luminescence spectra of Nd3± and Er3± ions in monocrystals of CaYAlO4 [J]. Phys. Status Solidi A, 1977, 41(2): 379-383. doi: 10.1002/pssa.2210410204http://dx.doi.org/10.1002/pssa.2210410204
WANG C, XIA H P, FENG Z G, et al. Infrared spectral properties for α-NaYF4 single crystal of various Er3+ doping concentrations [J]. Opt. Laser Technol., 2016, 82: 157-162. doi: 10.1016/j.optlastec.2016.03.012http://dx.doi.org/10.1016/j.optlastec.2016.03.012
LIU J, SONG Q S, LI D Z, et al. Crystal growth and spectroscopic characterization of Sm∶LaMgAl11O19 crystal [J]. J. Lumin., 2019, 215: 116701-1-6. doi: 10.1016/j.jlumin.2019.116701http://dx.doi.org/10.1016/j.jlumin.2019.116701
LIU B, WANG Q G, XU X D, et al. Polarized spectral properties of Sm∶YAlO3 single crystal for reddish-orange laser [J]. Opt. Mater., 2020, 99: 109510-1-5. doi: 10.1016/j.optmat.2019.109510http://dx.doi.org/10.1016/j.optmat.2019.109510
DI J Q, XU X D, XIA C T, et al. Crystal growth and optical properties of Sm∶CaNb2O6 single crystal [J]. J. Alloys Compd., 2012, 536: 20-25. doi: 10.1016/j.jallcom.2012.04.105http://dx.doi.org/10.1016/j.jallcom.2012.04.105
GHEORGHE C, HAU S, GHEORGHE L, et al. Optical properties of Sm3+ doped Ca3(Nb, Ga)5O12 and Ca3(Li, Nb, Ga)5O12 single crystals [J]. J. Lumin., 2017, 186: 175-182. doi: 10.1016/j.jallcom.2017.12.259http://dx.doi.org/10.1016/j.jallcom.2017.12.259
HE W Y, WANG X F, ZHENG J, et al. Optical property of Dy3+- and Ce3+ -doped Si-B-Na-Sr glasses [J]. J. Am. Ceram. Soc., 2014, 97(6): 1750-1755.
LIN H, PUN E Y B, MAN S Q, et al. Optical transitions and frequency upconversion of Er3+ ions in Na2O·Ca3Al2Ge3O12 glasses [J]. J. Opt. Soc. Am. B, 2001, 18(5): 602-609. doi: 10.1364/josab.18.000602http://dx.doi.org/10.1364/josab.18.000602
廖家裕, 陈鸿玲, 牛晓晨, 等. 新型中红外激光晶体Er3+/Ho3+/Eu3+∶PbF2的生长和性能 [J]. 发光学报, 2021, 42(12): 1852-1862. doi: 10.37188/cjl.20210312http://dx.doi.org/10.37188/cjl.20210312
LIAO J Y, CHEN H L, NIU X C, et al. Growth and properties of novel mid-infrared laser crystal Er3+/Ho3+/Eu3+∶PbF2 [J]. Chin. J. Lumin., 2021, 42(12): 1852-1862. (in Chinese). doi: 10.37188/cjl.20210312http://dx.doi.org/10.37188/cjl.20210312
BRIK M G, ISHII T, TKACHUK A M, et al. Calculations of the transitions intensities in the optical spectra of Dy3+∶LiYF4 [J]. J. Alloys Compd., 2004, 374(1-2): 63-68. doi: 10.1016/j.jallcom.2003.11.142http://dx.doi.org/10.1016/j.jallcom.2003.11.142
CAVALLI E, BETTINELLI M, BELLETTI A, et al. Optical spectra of yttrium phosphate and yttrium vanadate single crystals activated with Dy3+ [J]. J. Alloys Compd., 2002, 341(1-2): 107-110. doi: 10.1016/s0925-8388(02)00079-8http://dx.doi.org/10.1016/s0925-8388(02)00079-8
LIU B, SHI J J, WANG Q G, et al. Crystal growth and yellow emission of Dy∶YAlO3 [J]. Opt. Mater., 2017, 72: 208-213. doi: 10.1016/j.optmat.2017.06.005http://dx.doi.org/10.1016/j.optmat.2017.06.005
BIGOTTA S, TONELLI M, CAVALLI E, et al. Optical spectra of Dy3+ in KY3F10 and LiLuF4 crystalline fibers [J]. J. Lumin., 2010, 130(1): 13-17. doi: 10.1016/j.jlumin.2009.05.008http://dx.doi.org/10.1016/j.jlumin.2009.05.008
XU R R, TIAN Y, HU L L, et al. Enhanced emission of 2.7 μm pumped by laser diode from Er3+/Pr3+-codoped germanate glasses [J]. Opt. Lett., 2011, 36(7): 1173-1175. doi: 10.1364/ol.36.001173http://dx.doi.org/10.1364/ol.36.001173
0
浏览量
178
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构