浏览全部资源
扫码关注微信
1.清远南玻节能新材料有限公司, 广东 清远 511650
2.华南理工大学 材料科学与工程学院, 发光材料与器件国家重点实验室, 广东 广州 510641
[ "刘红刚(1975-),男,河北沧州人,学士,工程师,2018年于大连理工大学获得学士学位,主要从事工程管理、特种玻璃的研究。 E-mail: liuhg@csgholding.com" ]
[ "陈健濠(1997-),男,广东潮州人,博士研究生,2020年于华南理工大学获得学士学位,主要从事微晶玻璃微腔的研究。 E-mail: 202110183972@mail.scut.edu.cn" ]
[ "董国平(1983-),男,江苏常州人,博士,教授,2010年于中国科学院上海光学精密机械研究所获得博士学位,主要从事光学玻璃与光纤器件的研究。 E-mail: dgp@scut.edu.cn" ]
纸质出版日期:2022-11-05,
收稿日期:2022-04-27,
修回日期:2022-05-19,
移动端阅览
刘红刚,陈健濠,肖子凡等.稀土离子掺杂微纳激光器研究进展[J].发光学报,2022,43(11):1663-1677.
LIU Hong-gang,CHEN Jian-hao,XIAO Zi-fan,et al.Research Progress in Rare Earth Ion-doped Microcavity Lasers[J].Chinese Journal of Luminescence,2022,43(11):1663-1677.
刘红刚,陈健濠,肖子凡等.稀土离子掺杂微纳激光器研究进展[J].发光学报,2022,43(11):1663-1677. DOI: 10.37188/CJL.20220161.
LIU Hong-gang,CHEN Jian-hao,XIAO Zi-fan,et al.Research Progress in Rare Earth Ion-doped Microcavity Lasers[J].Chinese Journal of Luminescence,2022,43(11):1663-1677. DOI: 10.37188/CJL.20220161.
微纳激光器能够将器件的物理尺寸缩小至微米甚至纳米级别,在集成光路和纳米技术等科技前沿领域有巨大的应用前景。在众多材料中,稀土离子掺杂激光增益微纳材料具有制备成本低、环境稳定性好、光谱丰富(紫外‐中红外)等独特优点,是一种理想的激光增益微纳材料。近年来,各种设计巧妙的稀土离子掺杂激光增益微纳材料的涌现,以及新型微纳光学谐振腔的设计和制造,大大促进了新兴稀土离子掺杂微纳激光器的发展。本文将从微纳激光器的基本组成出发,简要介绍新型稀土离子掺杂激光增益微纳材料的设计与制备,以及微纳光学谐振腔的基本原理;然后综述近期出现的具有代表性的稀土离子掺杂微纳激光器,讨论其制备工艺及激光性能。
Microlasers have huge potential in areas such as integrated optical paths and nanotechnology, owing to the capability of scaling physical dimension of devices down to micro-/nanometer level. In numerous materials, Rare-earth(RE) ion doped laser gain micro/nano materials show many advantages such as low preparation cost, good environmental stability and abundant spectrum bands(ultraviolet to mid-infrared), making it an ideal laser gain micro/nano material. In recent years, the emergence of various cleverly designed RE ion doped laser gain micro/nano materials and the design and manufacture of new micro/nano optical resonators have greatly promoted the development of new RE ion doped microlasers. In this paper, the design and preparation of novel RE ion doped laser gain micro/nano materials and the basic principle of micro/nano optical resonator are briefly introduced. Then, the representative RE ion doped microlasers are reviewed and their preparation process and laser performance are discussed.
稀土离子掺杂纳米材料光学微腔微纳激光器
rare-earth ions doped nanomaterialsoptical microcavitymicrolasers
MAIMAN T H. Stimulated optical radiation in ruby [J]. Nature, 1960, 187(4736): 493-494. doi: 10.1038/187493a0http://dx.doi.org/10.1038/187493a0
SU J, GOLDBERG A F, STOLTZ B M. Label-free detection of single nanoparticles and biological molecules using microtoroid optical resonators [J]. Light Sci. Appl., 2016, 5(1): e16001-1-6. doi: 10.1038/lsa.2016.1http://dx.doi.org/10.1038/lsa.2016.1
ZHI Y Y, YU X C, GONG Q H, et al. Single nanoparticle detection using optical microcavities [J]. Adv. Mater., 2017, 29(12): 1604920-1-19. doi: 10.1002/adma.201604920http://dx.doi.org/10.1002/adma.201604920
KANG S L, HUANG Z P, LIN W, et al. Enhanced single-mode fiber laser emission by nano-crystallization of oxyfluoride glass-ceramic cores [J]. J. Mater. Chem. C, 2019, 7(17): 5155-5162. doi: 10.1039/c9tc01170fhttp://dx.doi.org/10.1039/c9tc01170f
JACKSON S D. Towards high-power mid-infrared emission from a fibre laser [J]. Nat. Photonics, 2012, 6(7): 423-431. doi: 10.1038/nphoton.2012.149http://dx.doi.org/10.1038/nphoton.2012.149
BLANCHE P A, BABLUMIAN A, VOORAKARANAM R, et al. Holographic three-dimensional telepresence using large-area photorefractive polymer [J]. Nature, 2010, 468(7320): 80-83. doi: 10.1038/nature09521http://dx.doi.org/10.1038/nature09521
GROTJOHANN T, TESTA I, LEUTENEGGER M, et al. Diffraction-unlimited all-optical imaging and writing with a photochromic GFP [J]. Nature, 2011, 478(7368): 204-208. doi: 10.1038/nature10497http://dx.doi.org/10.1038/nature10497
JI X C, BARBOSA F A S, ROBERTS S P, et al. Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold [J]. Optica, 2017, 4(6): 619-624. doi: 10.1364/optica.4.000619http://dx.doi.org/10.1364/optica.4.000619
PILON F T A, LYASOTA A, NIQUET Y M, et al. Lasing in strained germanium microbridges [J]. Nat. Commun., 2019, 10(1): 2724-1-8. doi: 10.1038/s41467-019-10655-6http://dx.doi.org/10.1038/s41467-019-10655-6
BAO S Y, KIM D, ONWUKAEME C, et al. Low-threshold optically pumped lasing in highly strained germanium nanowires [J]. Nat. Commun., 2017, 8(1): 1845-1-7. doi: 10.1038/s41467-017-02026-whttp://dx.doi.org/10.1038/s41467-017-02026-w
HUANG M H, MAO S, FEICK H, et al. Room-temperature ultraviolet nanowire nanolasers [J]. Science, 2001, 292(5523): 1897-1899. doi: 10.1126/science.1060367http://dx.doi.org/10.1126/science.1060367
GUO X P, ZHEN S J, OUYANG T C, et al. An organic microlaser based on an aggregation-induced emission fluorophore for tensile strain sensing [J]. J. Mater. Chem. C, 2021, 9(14): 4888-4894. doi: 10.1039/d1tc00323bhttp://dx.doi.org/10.1039/d1tc00323b
TA V D, CHEN R, MA L, et al. Whispering gallery mode microlasers and refractive index sensing based on single polymer fiber [J]. Laser Photonics Rev., 2013, 7(1): 133-139. doi: 10.1002/lpor.201200074http://dx.doi.org/10.1002/lpor.201200074
ZHOU T J, TANG M C, XIANG G H, et al. Continuous-wave quantum dot photonic crystal lasers grown on on-axis Si (001) [J]. Nat. Commun., 2020, 11(1): 977-1-7. doi: 10.1038/s41467-020-14736-9http://dx.doi.org/10.1038/s41467-020-14736-9
VELDHUIS S A, BOIX P P, YANTARA N, et al. Perovskite materials for light-emitting diodes and lasers [J]. Adv. Mater., 2016, 28(32): 6804-6834. doi: 10.1002/adma.201600669http://dx.doi.org/10.1002/adma.201600669
CHEN X, JIN L M, KONG W, et al. Confining energy migration in upconversion nanoparticles towards deep ultraviolet lasing [J]. Nat. Commun., 2016, 7: 10304-1-6. doi: 10.1038/ncomms10304http://dx.doi.org/10.1038/ncomms10304
ZHU H, CHEN X, JIN L M, et al. Amplified spontaneous emission and lasing from lanthanide-doped up-conversion nanocrystals [J]. ACS Nano, 2013, 7(12): 11420-11426. doi: 10.1021/nn405387thttp://dx.doi.org/10.1021/nn405387t
LIU Y W, TEITELBOIM A, FERNANDEZ-BRAVO A, et al. Controlled assembly of upconverting nanoparticles for low-threshold microlasers and their imaging in scattering media [J]. ACS Nano, 2020, 14(2): 1508-1519. doi: 10.1021/acsnano.9b06102http://dx.doi.org/10.1021/acsnano.9b06102
KANG S L, OUYANG T C, YANG D D, et al. Enhanced 2 µm mid-infrared laser output from Tm3+-activated glass ceramic microcavities [J]. Laser Photonics Rev., 2020, 14(5): 1900396-1-8. doi: 10.1002/lpor.201900396http://dx.doi.org/10.1002/lpor.201900396
OUYANG T C, KANG S L, ZHANG Z S, et al. Microlaser output from rare-earth ion-doped nanocrystal-in-glass microcavities [J]. Adv. Opt. Mater., 2019, 7(21): 1900197-1-7. doi: 10.1002/adom.201900197http://dx.doi.org/10.1002/adom.201900197
NGARA Z S, OKADA D, OKI O, et al. Energy transfer-assisted whispering gallery mode lasing in conjugated polymer/europium hybrid microsphere resonators [J]. Chem. -Asian J., 2019, 14(10): 1637-1641. doi: 10.1002/asia.201801219http://dx.doi.org/10.1002/asia.201801219
NARAYANA Y S L V, VENKATAKRISHNARAO D, BISWAS A, et al. Visible‐near-infrared range whispering gallery resonance from photonic μ-sphere cavities self-assembled from a blend of polystyrene and poly[4,7-bis(3-octylthiophene-2-yl)benzothiadiazole-co-2,6-bis(pyrazolyl)pyridine] coordinated to Tb(acac)3 [J]. ACS Appl. Mater. Interfaces, 2016, 8(1): 952-958. doi: 10.1021/acsami.5b10710http://dx.doi.org/10.1021/acsami.5b10710
YE R, XU C, WANG X J, et al. Room-temperature near-infrared up-conversion lasing in single-crystal Er-Y chloride silicate nanowires [J]. Sci. Rep., 2016, 6: 34407-1-6. doi: 10.1038/srep34407http://dx.doi.org/10.1038/srep34407
陈健濠, 郭晓萍, 潘绮雯, 等. 稀土离子掺杂纳米晶复合玻璃回音壁模式微腔激光器的研究进展 [J]. 硅酸盐学报, 2021, 49(8): 1567-1576. doi: 10.14062/j.issn.0454-5648.20200851http://dx.doi.org/10.14062/j.issn.0454-5648.20200851
CHEN J H, GUO X P, PAN Q W, et al. Research progress in rare-earth ion-doped nanocrystalline composite glass whispering gallery mode microcavity lasers [J]. J. Chin. Ceram. Soc., 2021, 49(8): 1567-1576. (in Chinese). doi: 10.14062/j.issn.0454-5648.20200851http://dx.doi.org/10.14062/j.issn.0454-5648.20200851
BELT M, BLUMENTHAL D J. Erbium-doped waveguide DBR and DFB laser arrays integrated within an ultra-low-loss Si3N4 platform [J]. Opt. Express, 2014, 22(9): 10655-10660. doi: 10.1364/oe.22.010655http://dx.doi.org/10.1364/oe.22.010655
BELT M, HUFFMAN T, DAVENPORT M L, et al. Arrayed narrow linewidth erbium-doped waveguide-distributed feedback lasers on an ultra-low-loss silicon-nitride platform [J]. Opt. Lett., 2013, 38(22): 4825-4828. doi: 10.1364/ol.38.004825http://dx.doi.org/10.1364/ol.38.004825
HOSSEINI E S, PURNAWIRMAN P, BRADLEY J D B, et al. CMOS-compatible 75 mW erbium-doped distributed feedback laser [J]. Opt. Lett., 2014, 39(11): 3106-3109. doi: 10.1364/ol.39.003106http://dx.doi.org/10.1364/ol.39.003106
PURNAWIRMAN, SUN J, ADAM T N, et al. C- and L-band erbium-doped waveguide lasers with wafer-scale silicon nitride cavities [J]. Opt. Lett., 2013, 38(11): 1760-1762. doi: 10.1364/ol.38.001760http://dx.doi.org/10.1364/ol.38.001760
MOLINA P, YRAOLA E, RAMÍREZ M O, et al. Plasmon-assisted Nd3+-based solid-state nanolaser [J]. Nano Lett., 2016, 16(2): 895-899. doi: 10.1021/acs.nanolett.5b03656http://dx.doi.org/10.1021/acs.nanolett.5b03656
SÁNCHEZ-GARCÍA L, RAMÍREZ M O, SOLÉ R M, et al. Plasmon-induced dual-wavelength operation in a Yb3+ laser [J]. Light Sci. Appl., 2019, 8: 14-1-9. doi: 10.1038/s41377-019-0125-2http://dx.doi.org/10.1038/s41377-019-0125-2
XU X H, ZHANG W F, JIN L M, et al. Random lasing in Eu3+ doped borate glass-ceramic embedded with Ag nanoparticles under direct three-photon excitation [J]. Nanoscale, 2015, 7(39): 16246-16250. doi: 10.1039/c5nr04814ahttp://dx.doi.org/10.1039/c5nr04814a
XU X H, ZHANG W F, YANG D C, et al. Phonon-assisted population inversion in lanthanide-doped upconversion Ba2LaF7 nanocrystals in glass-ceramics [J]. Adv. Mater., 2016, 28(36): 8045-8050. doi: 10.1002/adma.201601405http://dx.doi.org/10.1002/adma.201601405
CHEN Z, DONG G P, BARILLARO G, et al. Emerging and perspectives in microlasers based on rare-earth ions activated micro-/nanomaterials [J]. Prog. Mater Sci., 2021, 121: 100814-1-48. doi: 10.1016/j.pmatsci.2021.100814http://dx.doi.org/10.1016/j.pmatsci.2021.100814
BLOEMBERGEN N. Solid state infrared quantum counters [J]. Phys. Rev. Lett., 1959, 2(3): 84-85. doi: 10.1103/physrevlett.2.84http://dx.doi.org/10.1103/physrevlett.2.84
YAN R, LI Y. Down/up conversion in Ln3+-doped YF3 nanocrystals [J]. Adv. Funct. Mater., 2005, 15(5): 763-770. doi: 10.1002/adfm.200305044http://dx.doi.org/10.1002/adfm.200305044
YI G S, CHOW G M. Water-soluble NaYF4∶Yb,Er(Tm)/NaYF4/polymer core/shell/shell nanoparticles with significant enhancement of upconversion fluorescence [J]. Chem. Mater., 2007, 19(3): 341-343. doi: 10.1021/cm062447yhttp://dx.doi.org/10.1021/cm062447y
WANG F, WANG J, LIU X G. Direct evidence of a surface quenching effect on size-dependent luminescence of upconversion nanoparticles [J]. Angew. Chem. Int. Ed., 2010, 49(41): 7456-7460. doi: 10.1002/anie.201003959http://dx.doi.org/10.1002/anie.201003959
ZHONG Y T, MA Z R, ZHU S J, et al. Boosting the down-shifting luminescence of rare-earth nanocrystals for biological imaging beyond 1 500 nm [J]. Nat. Commun., 2017, 8(1): 737-1-7. doi: 10.1038/s41467-017-00917-6http://dx.doi.org/10.1038/s41467-017-00917-6
TERRASCHKE H, WICKLEDER C. UV, Blue, green, yellow, red, and small: newest developments on Eu2+-doped nanophosphors [J]. Chem. Rev., 2015, 115(20): 11352-11378. doi: 10.1021/acs.chemrev.5b00223http://dx.doi.org/10.1021/acs.chemrev.5b00223
HAASE M, SCHÄFER H. Upconverting nanoparticles [J]. Angew. Chem. Int. Ed., 2011, 50(26): 5808-5829. doi: 10.1002/anie.201005159http://dx.doi.org/10.1002/anie.201005159
LIN C G, DAI S X, LIU C, et al. Mechanism of the enhancement of mid-infrared emission from GeS2-Ga2S3 chalcogenide glass-ceramics doped with Tm3+ [J]. Appl. Phys. Lett., 2012, 100(23): 231910-1-4. doi: 10.1063/1.4727900http://dx.doi.org/10.1063/1.4727900
BHAKTHA S N B, BECLIN F, BOUAZAOUI M, et al. Enhanced fluorescence from Eu3+ in low-loss silica glass-ceramic waveguides with high SnO2 content [J]. Appl. Phys. Lett., 2008, 93(21): 211904-1-3. doi: 10.1063/1.3037224http://dx.doi.org/10.1063/1.3037224
GOUTALAND F, JANDER P, BROCKLESBY W S, et al. Crystallisation effects on rare earth dopants in oxyfluoride glass ceramics [J]. Opt. Mater., 2003, 22(4): 383-390. doi: 10.1016/s0925-3467(02)00373-7http://dx.doi.org/10.1016/s0925-3467(02)00373-7
黄立辉, 赵静涛, 赵士龙, 等. Eu3+掺杂含CaF2纳米晶锗酸盐微晶玻璃的制备及其发光性质 [J]. 发光学报, 2020, 41(10): 1234-1240.
HUANG L X, ZHAO J T, ZHAO S L, et al. Preparation and luminescence properties of Eu3+ doped germanate glass ceramics containing CaF2 nanocrystals [J]. Chin. J. Lumin., 2020, 41(10): 1234-1240. (in Chinese)
LI X Y, CHEN D Q, HUANG F, et al. Phase-selective nanocrystallization of NaLnF4 in aluminosilicate glass for random laser and 940 nm LED-excitable upconverted luminescence [J]. Laser Photonics Rev., 2018, 12(7): 1800030-1-8. doi: 10.1002/lpor.201800030http://dx.doi.org/10.1002/lpor.201800030
BRADLEY J D B, AY F, WÖRHOFF K, et al. Fabrication of low-loss channel waveguides in Al2O3 and Y2O3 layers by inductively coupled plasma reactive ion etching [J]. Appl. Phys. B, 2007, 89(2-3): 311-318. doi: 10.1007/s00340-007-2815-3http://dx.doi.org/10.1007/s00340-007-2815-3
BRADLEY J D, STOFFER R, AGAZZI L, et al. Integrated Al2O3∶Er3+ ring lasers on silicon with wide wavelength selectivity [J]. Opt. Lett., 2010, 35(1): 73-75. doi: 10.1364/ol.35.000073http://dx.doi.org/10.1364/ol.35.000073
LI N X, MAGDEN E S, SU Z, et al. Broadband 2-µm emission on silicon chips: monolithically integrated holmium lasers [J]. Opt. Express, 2018, 26(3): 2220-2230. doi: 10.1364/oe.26.002220http://dx.doi.org/10.1364/oe.26.002220
MA Y G, GUO X, WU X Q, et al. Semiconductor nanowire lasers [J]. Adv. Opt. Photonics, 2013, 5(3): 216-273. doi: 10.1364/aop.5.000216http://dx.doi.org/10.1364/aop.5.000216
JOHNSON J C, YAN H Q, YANG P D, et al. Optical cavity effects in ZnO nanowire lasers and waveguides [J]. J. Phys. Chem. B, 2003, 107(34): 8816-8828. doi: 10.1021/jp034482nhttp://dx.doi.org/10.1021/jp034482n
LORD RAYLEIGH O M F R S. CXII. The problem of the whispering gallery [J]. London Edinb. Dubl. Phil. Mag. J. Sci., 1910, 20(120): 1001-1004. doi: 10.1080/14786441008636993http://dx.doi.org/10.1080/14786441008636993
RICHTMYER R D. Dielectric resonators [J]. J. Appl. Phys., 1939, 10(6): 391-398. doi: 10.1063/1.1707320http://dx.doi.org/10.1063/1.1707320
KOGELNIK H, SHANK C V. Coupled-wave theory of distributed feedback lasers [J]. J. Appl. Phys., 1972, 43(5): 2327-2335. doi: 10.1063/1.1661499http://dx.doi.org/10.1063/1.1661499
TSUTSUMI N, ISHIBASHI T. Organic dye lasers with distributed Bragg reflector grating and distributed feedback resonator [J]. Opt. Express, 2009, 17(24): 21698-21703. doi: 10.1364/oe.17.021698http://dx.doi.org/10.1364/oe.17.021698
PREMARATNE M, STOCKMAN M I. Theory and technology of SPASERs [J]. Adv. Opt. Photonics, 2017, 9(1): 79-128. doi: 10.1364/aop.9.000079http://dx.doi.org/10.1364/aop.9.000079
SANDOGHDAR V, TREUSSART F, HARE J, et al. Very low threshold whispering-gallery-mode microsphere laser [J]. Phys. Rev. A, 1996, 54(3): R1777-R1780. doi: 10.1103/physreva.54.r1777http://dx.doi.org/10.1103/physreva.54.r1777
WU J F, JIANG S B, PEYGHAMBARIAN N. 1.5-µm-band thulium-doped microsphere laser originating from self-terminating transition [J]. Opt. Express, 2005, 13(25): 10129-10133.
PAL A, CHEN S Y, SEN R J, et al. A high-Q low threshold thulium-doped silica microsphere laser in the 2 µm wavelength region designed for gas sensing applications [J]. Laser Phys. Lett., 2013, 10(8): 085101-1-6. doi: 10.1088/1612-2011/10/8/085101http://dx.doi.org/10.1088/1612-2011/10/8/085101
LISSILLOUR F, MESSAGER D, STÉPHAN G, et al. Whispering-gallery-mode laser at 1.56 μm excited by a fiber taper [J]. Opt. Lett., 2001, 26(14): 1051-1053. doi: 10.1364/ol.26.001051http://dx.doi.org/10.1364/ol.26.001051
FERNANDEZ-BRAVO A, YAO K Y, BARNARD E S, et al. Continuous-wave upconverting nanoparticle microlasers [J]. Nat. Nanotechnol., 2018, 13(7): 572-577. doi: 10.1038/s41565-018-0161-8http://dx.doi.org/10.1038/s41565-018-0161-8
SHANG Y F, ZHOU J J, CAI Y J, et al. Low threshold lasing emissions from a single upconversion nanocrystal [J]. Nat. Commun., 2020, 11(1): 6156-1-7. doi: 10.1038/s41467-020-19797-4http://dx.doi.org/10.1038/s41467-020-19797-4
MAGDEN E S, LI N X, PURNAWIRMAN, et al. Monolithically-integrated distributed feedback laser compatible with CMOS processing [J]. Opt. Express, 2017, 25(15): 18058-18065. doi: 10.1364/oe.25.018058http://dx.doi.org/10.1364/oe.25.018058
PURNAWIRMAN, LI N X, MAGDEN E S, et al. Ultra-narrow-linewidth Al2O3∶Er3+ lasers with a wavelength-insensitive waveguide design on a wafer-scale silicon nitride platform [J]. Opt. Express, 2017, 25(12): 13705-13713. doi: 10.1364/OE.25.013705http://dx.doi.org/10.1364/OE.25.013705
LI N X, SU Z, PURNAWIRMAN, et al. Athermal synchronization of laser source with WDM filter in a silicon photonics platform [J]. Appl. Phys. Lett., 2017, 110(21): 211105-1-5. doi: 10.1063/1.4984022http://dx.doi.org/10.1063/1.4984022
0
浏览量
708
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构