浏览全部资源
扫码关注微信
重庆理工大学 材料科学与工程学院, 重庆 400054
[ "郑贤(1997-),女,重庆人,硕士研究生,2019年于重庆理工大学获得学士学位,主要从事聚合物光功能材料的研究。 E-mail: 1150078413@qq.com" ]
[ "杨朝龙(1985-),男,云南马关人,博士,教授,2013年于中国科学院大学获得博士学位,主要从事光功能高分子材料方面的研究。 E-mail: yclzjun@163.com" ]
纸质出版日期:2022-07-05,
收稿日期:2022-04-22,
修回日期:2022-05-09,
移动端阅览
郑贤,杨朝龙.纯有机室温磷光材料研究现状与策略[J].发光学报,2022,43(07):1027-1039.
ZHENG Xian,YANG Chao-long.Research Status and Strategy of Pure Organic Room Temperature Phosphorescent Materials[J].Chinese Journal of Luminescence,2022,43(07):1027-1039.
郑贤,杨朝龙.纯有机室温磷光材料研究现状与策略[J].发光学报,2022,43(07):1027-1039. DOI: 10.37188/CJL.20220151.
ZHENG Xian,YANG Chao-long.Research Status and Strategy of Pure Organic Room Temperature Phosphorescent Materials[J].Chinese Journal of Luminescence,2022,43(07):1027-1039. DOI: 10.37188/CJL.20220151.
纯有机室温磷光材料因其成本低廉和性能易调控等优点,成为目前功能材料领域研究的热点。本文详细介绍了近年来纯有机室温磷光材料的发展,系统归纳了纯有机小分子晶体、聚合物和智能响应的室温磷光材料进展,并总结了在室温大气环境下实现有机室温磷光的有效策略。
Pure organic room temperature phosphorescence materials have become a research hotshots in the field of functional materials because of their low cost and easy regulation of performance. In this work, the development of pure organic room temperature phosphorescence materials in recent years is introduced in detail. The pure organic small molecular crystals, polymers and intelligent room temperature phosphorescence materials were systematically summarized. Finally, the effective strategies of realizing organic phosphorescence in room temperature atmosphere are summarized.
纯有机材料室温磷光(RTP)长余辉晶体聚合物智能材料
pure organic materialsroom temperature phosphorescenceafterglowcrystalpolymersmart materials
李亚. 稀土掺杂Sr3Al2O6的合成与发光性能研究 [D]. 广州:广东工业大学, 2012:1-13. doi: 10.1016/s1002-0721(12)60186-0http://dx.doi.org/10.1016/s1002-0721(12)60186-0
LI Y. Preparation and Luminescent Properties of Sr3Al2O6 Coped with Rare Earth Ions [D]. Guangzhou:Guangdong University of Technology, 2012:1-13. (in Chinese). doi: 10.1016/s1002-0721(12)60186-0http://dx.doi.org/10.1016/s1002-0721(12)60186-0
史晨. 锗酸盐多重光响应长余辉材料的制备、响应机理及应用研究 [D]. 无锡:江南大学, 2021:1-9.
SHI C. Preparation,Photo⁃responsive Mechanism and Application of Germanate Long⁃lasting Materials [D]. Wuxi:Jiangnan University, 2021:1-9. (in Chinese)
闫斯怡. 紫外长余辉材料的发射及其上转换激发陷阱填充性质的研究 [D]. 长春:东北师范大学, 2021.
YAN S Y. Ultraviolet Persistent Luminescence and Up⁃conversion Charging of Persistent Phosphors [D]. Changchun:Northeast Normal University, 2021. (in Chinese)
YU Y,KWON M S,JUNG J,et al. Room‐temperature‐phosphorescence-based dissolved oxygen detection by core‐shell polymer nanoparticles containing metal‐free organic phosphors [J]. Angew. Chem. Int. Ed., 2017,56(51):16207-16211. doi: 10.1002/anie.201708606http://dx.doi.org/10.1002/anie.201708606
WANG X F,XIAO H Y,CHEN P Z,et al. Pure organic room temperature phosphorescence from excited dimers in self-assembled nanoparticles under visible and near-infrared irradiation in water [J]. J. Am. Chem. Soc., 2019,141(12):5045-5050. doi: 10.1021/jacs.9b00859http://dx.doi.org/10.1021/jacs.9b00859
KABE R,NOTSUKA N,YOSHIDA K,et al. Afterglow organic light‐emitting diode [J]. Adv. Mater., 2016,28(4):655-660. doi: 10.1002/adma.201504321http://dx.doi.org/10.1002/adma.201504321
SHI H F,MA X,ZHAO Q,et al. Ultrasmall phosphorescent polymer dots for ratiometric oxygen sensing and photodynamic cancer therapy [J]. Adv. Funct. Mater., 2014,24(30):4823-4830. doi: 10.1002/adfm.201400647http://dx.doi.org/10.1002/adfm.201400647
MA X,ZHANG J,CAO JJ,et al. A room temperature phosphorescence encoding[2]rotaxane molecular shuttle [J]. Chem. Sci., 2016,7(7):4582-4588. doi: 10.1039/c6sc00769dhttp://dx.doi.org/10.1039/c6sc00769d
ZHEN X,XIE C,PU K Y. Temperature-correlated afterglow of a semiconducting polymer nanococktail for imaging-guided photothermal therapy [J]. Angew. Chem. Int. Ed., 2018,57(15):3938-3942. doi: 10.1002/anie.201712550http://dx.doi.org/10.1002/anie.201712550
CHEN T,ZHENG L,YUAN J,et al. Understanding the control of singlet-triplet splitting for organic exciton manipulating:a combined theoretical and experimental approach [J]. Sci. Rep., 2015,5(1):10923-1-11. doi: 10.1038/srep10923http://dx.doi.org/10.1038/srep10923
ZHANG J Y,XU S,WANG Z J,et al. Stimuli-responsive deep-blue organic ultralong phosphorescence with lifetime over 5 s for reversible water-jet anti-counterfeiting printing [J]. Angew. Chem. Int. Ed., 2021,60(31):17094-17101. doi: 10.1002/anie.202104361http://dx.doi.org/10.1002/anie.202104361
WANG J G,GU X G,MA H L,et al. A facile strategy for realizing room temperature phosphorescence and single molecule white light emission [J]. Nat. Commun., 2018,9:2963-1-9. doi: 10.1038/s41467-018-05298-yhttp://dx.doi.org/10.1038/s41467-018-05298-y
MENG Y D,GUO S,JIANG B L,et al. Boosting the humidity resistance of nonconventional luminogens with room temperature phosphorescence via enhancing the strength of hydrogen bonds [J]. J. Mater. Chem. C, 2021,9(27):8515-8523. doi: 10.1039/d1tc01271ahttp://dx.doi.org/10.1039/d1tc01271a
AN Z F,ZHENG C,TAO Y,et al. Stabilizing triplet excited states for ultralong organic phosphorescence [J]. Nat. Mater., 2015,14(7):685-690. doi: 10.1038/nmat4259http://dx.doi.org/10.1038/nmat4259
WEI P F,ZHANG X P,LIU J K,et al. New wine in old bottles:prolonging room-temperature phosphorescence of crown ethers by supramolecular interactions [J]. Angew. Chem. Int. Ed., 2020,59(24):9293-9298. doi: 10.1002/anie.201912155http://dx.doi.org/10.1002/anie.201912155
YAN Z A,LIN X H,SUN S Y,et al. Activating room-temperature phosphorescence of organic luminophores via external heavy-atom effect and rigidity of ionic polymer matrix [J]. Angew. Chem. Int. Ed., 2021,60(36):19735-19739. doi: 10.1002/anie.202108025http://dx.doi.org/10.1002/anie.202108025
GU L,YE W P,LIANG X,et al. Circularly polarized organic room temperature phosphorescence from amorphous copolymers [J]. J. Am. Chem. Soc., 2021,143(44):18527-18535. doi: 10.1021/jacs.1c08118http://dx.doi.org/10.1021/jacs.1c08118
LI D F,LU F F,WANG J,et al. Amorphous metal-free room-temperature phosphorescent small molecules with multicolor photoluminescence via a host-guest and dual-emission strategy [J]. J. Am. Chem. Soc.,2018,140(5):1916-1923. doi: 10.1021/jacs.7b12800http://dx.doi.org/10.1021/jacs.7b12800
ZHU H T Z,BADÍA-DOMÍNGUEZ I,SHI B B,et al. Cyclization-promoted ultralong low-temperature phosphorescence via boosting intersystem crossing [J]. J. Am. Chem. Soc., 2021,143(4):2164-2169. doi: 10.1021/jacs.0c12659http://dx.doi.org/10.1021/jacs.0c12659
GONG Y Y,ZHAO L F,PENG Q,et al. Crystallization-induced dual emission from metal-and heavy atom-free aromatic acids and esters [J]. Chem. Sci., 2015,6(8):4438-4444. doi: 10.1039/c5sc00253bhttp://dx.doi.org/10.1039/c5sc00253b
YAN X,PENG H,XIANG Y,et al. Recent advances on host-guest material systems toward organic room temperature phosphorescence [J]. Small, 2022,18(1):2104073-1-53. doi: 10.1002/smll.202104073http://dx.doi.org/10.1002/smll.202104073
GUO S,DAI W B,CHEN X Q,et al. Recent progress in pure organic room temperature phosphorescence of small molecular host-guest systems [J]. ACS Materials Lett., 2021,3(4):379-397. doi: 10.1021/acsmaterialslett.1c00062http://dx.doi.org/10.1021/acsmaterialslett.1c00062
LIANG Y C,SHANG Y,LIU K K,et al. Water-induced ultralong room temperature phosphorescence by constructing hydrogen-bonded networks [J]. Nano Res., 2020,13(3):875-881. doi: 10.1007/s12274-020-2710-3http://dx.doi.org/10.1007/s12274-020-2710-3
LIN F X,WANG H Y,CAO Y F,et al. Stepwise energy transfer:near-infrared persistent luminescence from doped polymeric systems [J]. Adv. Mater., 2022,34(15):2108333-1-9. doi: 10.1002/adma.202108333http://dx.doi.org/10.1002/adma.202108333
ZHANG Y F,SU Y,WU H W,et al. Large-area,flexible,transparent,and long-lived polymer-based phosphorescence films [J]. J. Am. Chem. Soc., 2021,143(34):13675-13685. doi: 10.1021/jacs.1c05213http://dx.doi.org/10.1021/jacs.1c05213
JIANG N,LI G F,ZHANG B H,et al. Aggregation-induced long-lived phosphorescence in nonconjugated polyurethane derivatives at 77 K [J]. Macromolecules, 2018,51(11):4178-4184. doi: 10.1021/acs.macromol.8b00715http://dx.doi.org/10.1021/acs.macromol.8b00715
ZHENG Y,ZHOU Q,YANG Y,et al. Full-color long-lived room temperature phosphorescence in aqueous environment [J]. Small, 2022,18(19):2201223. doi: 10.1002/smll.202201223http://dx.doi.org/10.1002/smll.202201223
孙静,马会利,安众福,等. 高分子长余辉发光材料研究进展 [J]. 发光学报, 2020,41(12):1490-1503. doi: 10.37188/CJL.20200317http://dx.doi.org/10.37188/CJL.20200317
SUN J,MA H L,AN Z F,et al. Recent development of polymers with long-lived persistent luminescence [J]. Chin. J. Lumin., 2020,41(12):1490-1503. (in Chinese). doi: 10.37188/CJL.20200317http://dx.doi.org/10.37188/CJL.20200317
POLITZER P,LANE P,CONCHA M C,et al. An overview of halogen bonding [J]. J. Mol. Model., 2007,13(2):305-311. doi: 10.1007/s00894-006-0154-7http://dx.doi.org/10.1007/s00894-006-0154-7
GONG Y Y,CHEN G,PENG Q,et al. Achieving persistent room temperature phosphorescence and remarkable mechanochromism from pure organic luminogens [J]. Adv. Mater., 2015,27(40):6195-6201. doi: 10.1002/adma.201502442http://dx.doi.org/10.1002/adma.201502442
ZHAO W J,HE Z K,LAM J W Y,et al. Rational molecular design for achieving persistent and efficient pure organic room-temperature phosphorescence [J]. Chem, 2016,1(4):592-602. doi: 10.1016/j.chempr.2016.08.010http://dx.doi.org/10.1016/j.chempr.2016.08.010
SHI H F,AN Z F,LI P Z,et al. Enhancing organic phosphorescence by manipulating heavy-atom interaction [J]. Cryst. Growth Des., 2016,16(2):808-813. doi: 10.1021/acs.cgd.5b01400http://dx.doi.org/10.1021/acs.cgd.5b01400
GU L,SHI H F,MIAO C Y,et al. Prolonging the lifetime of ultralong organic phosphorescence through dihydrogen bonding [J]. J. Mater. Chem. C, 2018,6(2):226-233. doi: 10.1039/c7tc04452fhttp://dx.doi.org/10.1039/c7tc04452f
LIAO Q Y,GAO Q H,WANG J Q,et al. 9,9‐Dimethylxanthene derivatives with room‐temperature phosphorescence:substituent effects and emissive properties [J]. Angew. Chem. Int. Ed., 2020,59(25):9946-9951. doi: 10.1002/anie.201916057http://dx.doi.org/10.1002/anie.201916057
WANG W Z,ZHANG Y,JIN W J. Halogen bonding in room-temperature phosphorescent materials [J]. Coord. Chem. Rev., 2020,404:213107. doi: 10.1016/j.ccr.2019.213107http://dx.doi.org/10.1016/j.ccr.2019.213107
YANG Z,XU C,LI W L,et al. Boosting the quantum efficiency of ultralong organic phosphorescence up to 52% via intramolecular halogen bonding [J]. Angew. Chem. Int. Ed., 2020,59(40):17451-17455. doi: 10.1002/anie.202007343http://dx.doi.org/10.1002/anie.202007343
FENG H T,ZENG J J,YIN P A,et al. Tuning molecular emission of organic emitters from fluorescence to phosphorescence through push-pull electronic effects [J]. Nat. Commun., 2020,11(1):2617-1-9. doi: 10.1038/s41467-020-16412-4http://dx.doi.org/10.1038/s41467-020-16412-4
BOLTON O,LEE K,KIM H J,et al. Activating efficient phosphorescence from purely organic materials by crystal design [J]. Nat. Chem., 2011,3(3):205-210. doi: 10.1038/nchem.984http://dx.doi.org/10.1038/nchem.984
GAO Y J,LI C,LIU R,et al. Phosphorescence of several cocrystals assembled by diiodotetrafluorobenzene and three ring angular diazaphenanthrenes via C—I···N halogen bond [J]. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2017,173:792-799. doi: 10.1016/j.saa.2016.10.038http://dx.doi.org/10.1016/j.saa.2016.10.038
LIU R,GAO Y J,JIN W J. Color-tunable phosphorescence of 1,10-phenanthrolines by 4,7-methyl/-diphenyl/-dichloro substituents in cocrystals assembled via bifurcated C—I···N halogen bonds using 1,4-diiodotetrafluorobenzene as a bonding donor [J]. Acta Cryst. Sect. B Struct. Sci. Cryst. Eng. Mater., 2017,73(2):247-254. doi: 10.1107/s205252061700292xhttp://dx.doi.org/10.1107/s205252061700292x
WANG H,JIN W J. Cocrystal assembled by 1,4-diiodotetrafluorobenzene and phenothiazine based on C—I···π/N/S halogen bond and other assisting interactions [J]. Acta Cryst. Sect. B Struct. Sci. Cryst. Eng. Mater., 2017,73(2):210-216. doi: 10.1107/s2052520617002918http://dx.doi.org/10.1107/s2052520617002918
KABE R,ADACHI C. Organic long persistent luminescence [J]. Nature, 2017,550(7676):384-387. doi: 10.1038/nature24010http://dx.doi.org/10.1038/nature24010
ALAM P,LEUNG N L C,LIU J K,et al. Two are better than one:a design principle for ultralong-persistent luminescence of pure organics [J]. Adv. Mater., 2020,32(22):2001026. doi: 10.1002/adma.202001026http://dx.doi.org/10.1002/adma.202001026
SINGH M,LIU K,QU S L,et al. Recent advances of cocrystals with room temperature phosphorescence [J]. Adv. Opt. Mater., 2021,9(10):2002197. doi: 10.1002/adom.202002197http://dx.doi.org/10.1002/adom.202002197
WANG D L,WU H Z,GONG J Y,et al. Unveiling the crucial contributions of electrostatic and dispersion interactions to the ultralong room-temperature phosphorescence of H-bond crosslinked poly(vinyl alcohol) films [J]. Mater. Horizons, 2022,9(3):1081-1088. doi: 10.1039/d1mh01829ahttp://dx.doi.org/10.1039/d1mh01829a
WU H W,GU L,BARYSHNIKOV G V,et al. Molecular phosphorescence in polymer matrix with reversible sensitivity [J]. ACS Appl. Mater. Interfaces, 2020,12(18):20765-20774. doi: 10.1021/acsami.0c04859http://dx.doi.org/10.1021/acsami.0c04859
ZHANG G Q,PALMER G M,DEWHIRST M W,et al. A dual-emissive-materials design concept enables tumour hypoxia imaging [J]. Nat. Mater., 2009,8(9):747-751. doi: 10.1038/nmat2509http://dx.doi.org/10.1038/nmat2509
REINEKE S,SEIDLER N,YOST S R,et al. Highly efficient,dual state emission from an organic semiconductor [J]. Appl. Phys. Lett., 2013,103(9):093302-1-6. doi: 10.1063/1.4819444http://dx.doi.org/10.1063/1.4819444
REINEKE S,BALDO M A. Room temperature triplet state spectroscopy of organic semiconductors [J]. Sci. Rep., 2014,4(1):3797-1-8. doi: 10.1038/srep03797http://dx.doi.org/10.1038/srep03797
SALAS REDONDO C,KLEINE P,ROSZEITIS K,et al. Interplay of fluorescence and phosphorescence in organic biluminescent emitters [J]. J. Phys. Chem. C, 2017,121(27):14946-14953. doi: 10.1021/acs.jpcc.7b04529http://dx.doi.org/10.1021/acs.jpcc.7b04529
WANG S,MA L,WANG Q Y,et al. Covalent organic frameworks:a platform for the experimental establishment of the influence of intermolecular distance on phosphorescence [J]. J. Mater. Chem. C, 2018,6(20):5369-5374. doi: 10.1039/c8tc01559ghttp://dx.doi.org/10.1039/c8tc01559g
LEE D,BOLTON O,KIM B C,et al. Room temperature phosphorescence of metal-free organic materials in amorphous polymer matrices [J]. J. Am. Chem. Soc., 2013,135(16):6325-6329. doi: 10.1021/ja401769ghttp://dx.doi.org/10.1021/ja401769g
CHEN X F,XU C,WANG T,et al. Versatile room‐temperature‐phosphorescent materials prepared from N-substituted naphthalimides:emission enhancement and chemical conjugation [J]. Angew. Chem. Int. Ed., 2016,55(34):9872-9876. doi: 10.1002/anie.201601252http://dx.doi.org/10.1002/anie.201601252
KOCH M,PERUMAL K,BLACQUE O,et al. Metal‐free triplet phosphors with high emission efficiency and high tunability [J]. Angew. Chem. Int. Ed., 2014,53(25):6378-6382. doi: 10.1002/anie.201402199http://dx.doi.org/10.1002/anie.201402199
GAHLAUT R,JOSHI H C,JOSHI N K,et al. Luminescence characteristics and room temperature phosphorescence of naphthoic acids in polymers [J]. J. Lumin., 2013,138:122-128. doi: 10.1016/j.jlumin.2013.01.031http://dx.doi.org/10.1016/j.jlumin.2013.01.031
SU Y,PHUA S Z F,LI Y B,et al. Ultralong room temperature phosphorescence from amorphous organic materials toward confidential information encryption and decryption [J]. Sci. Adv., 2018,4(5):eaas9732-1-11. doi: 10.1126/sciadv.aas9732http://dx.doi.org/10.1126/sciadv.aas9732
SU Y,ZHANG Y F,WANG Z H,et al. Excitation-dependent long-life luminescent polymeric systems under ambient conditions [J]. Angew. Chem. Int. Ed., 2020,59(25):9967-9971. doi: 10.1002/anie.201912102http://dx.doi.org/10.1002/anie.201912102
GAO H,MA X. Recent progress on pure organic room temperature phosphorescent polymers [J]. Aggregate, 2021,2(4):e38-1-13. doi: 10.1002/agt2.38http://dx.doi.org/10.1002/agt2.38
LOUIS M,THOMAS H,GMELCH M,et al. Biluminescence under ambient conditions:water-soluble organic emitter in high-oxygen-barrier polymer [J]. Adv. Opt. Mater., 2020,8(16):2000427-1-6. doi: 10.1002/adom.202000427http://dx.doi.org/10.1002/adom.202000427
QIAN C,MA Z M,FU X H,et al. More than carbazole derivatives activate room temperature ultralong organic phosphorescence of benzoindole derivatives [J]. Adv. Mater., 2022,34(19):2200544. doi: 10.1002/adma.202200544http://dx.doi.org/10.1002/adma.202200544
MA H L,YU H D,PENG Q,et al. Hydrogen bonding-induced morphology dependence of long-lived organic room-temperature phosphorescence:a computational study [J]. J. Phys. Chem. Lett., 2019,10(21):6948-6954. doi: 10.1021/acs.jpclett.9b02568http://dx.doi.org/10.1021/acs.jpclett.9b02568
FANG M M,YANG J,LI Z. Recent advances in purely organic room temperature phosphorescence polymer [J]. Chin. J. Polym. Sci., 2019,37(4):383-393. doi: 10.1007/s10118-019-2218-zhttp://dx.doi.org/10.1007/s10118-019-2218-z
LIN X H,WANG J,DING B B,et al. Tunable-emission amorphous room-temperature phosphorescent polymers based on thermoreversible dynamic covalent bonds [J]. Angew. Chem. Int. Ed., 2021,60(7):3459-3463. doi: 10.1002/anie.202012298http://dx.doi.org/10.1002/anie.202012298
DEROSA C A,KERR C,FAN Z Y,et al. Tailoring oxygen sensitivity with halide substitution in difluoroboron dibenzoyl methane polylactide materials [J]. ACS Appl. Mater. Interfaces, 2015,7(42):23633-23643. doi: 10.1021/acsami.5b07126http://dx.doi.org/10.1021/acsami.5b07126
ZHANG T,CHEN H,MA X,et al. Amorphous 2-bromocarbazole copolymers with efficient room-temperature phosphorescent emission and applications as encryption ink [J]. Ind. Eng. Chem. Res., 2017,56(11):3123-3128. doi: 10.1021/acs.iecr.7b00149http://dx.doi.org/10.1021/acs.iecr.7b00149
CHEN H,YAO X Y,MA X,et al. Amorphous,efficient,room-temperature phosphorescent metal-free polymers and their applications as encryption ink [J]. Adv. Opt. Mater., 2016,4(9):1397-1401. doi: 10.1002/adom.201600427http://dx.doi.org/10.1002/adom.201600427
MA X,XU C,WANG J,et al. Amorphous pure organic polymers for heavy-atom-free efficient room-temperature phosphorescence emission [J]. Angew. Chem. Int. Ed., 2018,57(34):10854-10858. doi: 10.1002/anie.201803947http://dx.doi.org/10.1002/anie.201803947
GU L,WU H W,MA H L,et al. Color-tunable ultralong organic room temperature phosphorescence from a multicomponent copolymer [J]. Nat. Commun., 2020,11(1):944-1-8. doi: 10.1038/s41467-020-14792-1http://dx.doi.org/10.1038/s41467-020-14792-1
LI D,YANG Y J,YANG J,et al. Completely aqueous processable stimulus responsive organic room temperature phosphorescence materials with tunable afterglow color [J]. Nat. Commun., 2022,13(1):347-1-8. doi: 10.1038/s41467-022-28011-6http://dx.doi.org/10.1038/s41467-022-28011-6
OGOSHI T,TSUCHIDA H,KAKUTA T,et al. Ultralong room-temperature phosphorescence from amorphous polymer poly(styrene sulfonic acid) in air in the dry solid state [J]. Adv. Funct. Mater., 2018,28(16):1707369-1-7. doi: 10.1002/adfm.201707369http://dx.doi.org/10.1002/adfm.201707369
ZHANG Y F,WANG Y C,YU X S,et al. Isophthalate-based room temperature phosphorescence:from small molecule to side-chain jacketed liquid crystalline polymer [J]. Macromolecules, 2019,52(6):2495-2503.
ZHANG Z Y,CHEN Y,LIU Y. Efficient room-temperature phosphorescence of a solid-state supramolecule enhanced by Cucurbit[6]uril [J]. Angew. Chem. Int. Ed., 2019,58(18):6028-6032. doi: 10.1002/anie.201901882http://dx.doi.org/10.1002/anie.201901882
ZHANG Z Y,XU W W,XU W S,et al. A synergistic enhancement strategy for realizing ultralong and efficient room-temperature phosphorescence [J]. Angew. Chem. Int. Ed., 2020,59(42):18748-18754. doi: 10.1002/anie.202008516http://dx.doi.org/10.1002/anie.202008516
ZHOU W L,CHEN Y,YU Q L,et al. Ultralong purely organic aqueous phosphorescence supramolecular polymer for targeted tumor cell imaging [J]. Nat. Commun., 2020,11(1):4655-1-10. doi: 10.1038/s41467-020-18520-7http://dx.doi.org/10.1038/s41467-020-18520-7
LI J J,ZHANG H Y,ZHANG Y,et al. Room-temperature phosphorescence and reversible white light switch based on a cyclodextrin polypseudorotaxane xerogel [J]. Adv. Opt. Mater., 2019,7(20):1900589-1-6. doi: 10.1002/adom.201900589http://dx.doi.org/10.1002/adom.201900589
YANG J,FANG M M,LI Z. Stimulus-responsive room temperature phosphorescence in purely organic luminogens [J]. InfoMat, 2020,2(5):791-806. doi: 10.1002/inf2.12107http://dx.doi.org/10.1002/inf2.12107
CHAI Z F,WANG C,WANG J F,et al. Abnormal room temperature phosphorescence of purely organic boron-containing compounds:the relationship between the emissive behaviorand the molecular packing,and the potential related applications [J]. Chem. Sci., 2017,8(12):8336-8344. doi: 10.1039/c7sc04098ahttp://dx.doi.org/10.1039/c7sc04098a
YANG J,ZHEN X,WANG B,et al. The influence of the molecular packing on the room temperature phosphorescence of purely organic luminogens [J]. Nat. Commun., 2018,9(1):840-1-10. doi: 10.1038/s41467-018-03236-6http://dx.doi.org/10.1038/s41467-018-03236-6
GU M X,SHI H F,LING K,et al. Polymorphism-dependent dynamic ultralong organic phosphorescence [J]. Research(Wash. D C), 2020,2020:8183450-1-9. doi: 10.34133/2020/8183450http://dx.doi.org/10.34133/2020/8183450
GAO L,ZHANG Y F,CHEN X H,et al. Water-induced blue-green variable nonconventional ultralong room temperature phosphorescence from cross-linked copolymers via click chemistry [J]. Adv. Opt. Mater., 2021,9(24):2101284. doi: 10.1002/adom.202101284http://dx.doi.org/10.1002/adom.202101284
TIAN Y,GONG Y B,LIAO Q Y,et al. Adjusting organic room-temperature phosphorescence with orderly stimulus-responsive molecular motion in crystals [J]. Cell Rep. Phys. Sci., 2020,1(5):100052-1-11. doi: 10.1016/j.xcrp.2020.100052http://dx.doi.org/10.1016/j.xcrp.2020.100052
SHANG H X,DING Z Y,SHEN Y,et al. Multi-color tunable circularly polarized luminescence in one single AIE system [J]. Chem. Sci., 2020,11(8):2169-2174. doi: 10.1039/c9sc05643bhttp://dx.doi.org/10.1039/c9sc05643b
LI D,YANG J,WANG Y S,et al. Bright mechanoluminescent luminogens even in daylight through close intermolecular interaction with the characteristic of hybridized local and charge transfer (HLCT) [J]. J. Mater. Chem. C, 2020,8(31):10852-10858. doi: 10.1039/d0tc01095bhttp://dx.doi.org/10.1039/d0tc01095b
WANG J Q,WANG C,GONG Y B,et al. Bromine-substituted fluorene:molecular structure,Br-Br interactions,room-temperature phosphorescence,and tricolor triboluminescence [J]. Angew. Chem. Int. Ed., 2018,57(51):16821-16826. doi: 10.1002/anie.201811660http://dx.doi.org/10.1002/anie.201811660
张永锋. 动态可调长寿命聚合物基发光材料的制备及辐照依赖特性研究 [D]. 重庆:重庆理工大学, 2021.
ZHANG Y F. Preparation of Long⁃lived and Tunable Polymer⁃based Luminescence Materials,and Research of UV Irradiation⁃dependent Properties [D]. Chongqing:Chongqing University of Technology, 2021. (in Chinese)
WANG Z H,GAO L,ZHENG Y,et al. Four-in-one stimulus-responsive long-lived luminescent systems based on pyrene-doped amorphous polymers [J]. Angew. Chem. Int. Ed., 2022,doi:10.1002/anie.202203254http://dx.doi.org/10.1002/anie.202203254.
WANG C,ZHANG Y F,WANG Z H,et al. Photo-induced dynamic room temperature phosphorescence based on triphenylphosphonium containing polymers [J]. Adv. Funct. Mater., 2022,32(18):2111941-1-10. doi: 10.1002/adfm.202111941http://dx.doi.org/10.1002/adfm.202111941
WANG Y S,YANG J,FANG M M,et al. New phenothiazine derivatives that exhibit photoinduced room-temperature phosphorescence [J]. Adv. Funct. Mater., 2021,31(40):2101719-1-8. doi: 10.1002/adfm.202101719http://dx.doi.org/10.1002/adfm.202101719
WANG Y S,YANG J,FANG M M,et al. Förster resonance energy transfer:an efficient way to develop stimulus-responsive room-temperature phosphorescence materials and their applications [J]. Matter, 2020,3(2):449-463. doi: 10.1016/j.matt.2020.05.005http://dx.doi.org/10.1016/j.matt.2020.05.005
WANG Y S,GAO H Q,YANG J,et al. High performance of simple organic phosphorescence host-guest materials and their application in time-resolved bioimaging [J]. Adv. Mater., 2021,33(18):2007811-1-8. doi: 10.1002/adma.202007811http://dx.doi.org/10.1002/adma.202007811
YU H J,ZHOU Q Y,DAI X Y,et al. Photooxidation-driven purely organic room-temperature phosphorescent lysosome-targeted imaging [J]. J. Am. Chem. Soc., 2021,143(34):13887-13894. doi: 10.1021/jacs.1c06741http://dx.doi.org/10.1021/jacs.1c06741
0
浏览量
746
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构