浏览全部资源
扫码关注微信
1.中国科学院长春应用化学研究所 稀土资源利用国家重点实验室, 吉林 长春 130022
2.南洋理工大学 物理与数学科学学院, 新加坡 637371
3.广州医科大学 基础医学院, 广东 广州 511436
[ "常梦宇(1994-),女,辽宁沈阳人,博士,2021年于中国科学院长春应用化学研究所获得博士学位,主要从事基于纳米材料的光热治疗的研究。 E-mail: mengyu.chang@ntu.edu.sg" ]
[ "侯智尧(1980-),男,黑龙江哈尔滨人,博士,教授,2009年于哈尔滨工程大学获得博士学位,主要从事基于纳米光能转换材料构建及其抗肿瘤协同治疗的研究。 E-mail: zyhou@gzhmu.edu.cn" ]
[ "林君(1966-),男,吉林长春人,博士,研究员,博士生导师,1995年于中国科学院化学研究所获得博士学位,主要从事稀土发光、纳米医学等的研究。 E-mail: jlin@ciac.ac.cn" ]
纸质出版日期:2022-07-05,
收稿日期:2022-04-02,
修回日期:2022-04-20,
扫 描 看 全 文
常梦宇,王曼,侯智尧等.纳米材料在肿瘤光热治疗中存在的问题及解决策略[J].发光学报,2022,43(07):995-1013
CHANG Meng-yu,WANG Man,HOU Zhi-yao,et al.Problems and Solutions of Nanomaterials in Antitumor Photothermal Therapy[J].Chinese Journal of Luminescence,2022,43(07):995-1013.
常梦宇,王曼,侯智尧等.纳米材料在肿瘤光热治疗中存在的问题及解决策略[J].发光学报,2022,43(07):995-1013 DOI: 10.37188/CJL.20220118.
CHANG Meng-yu,WANG Man,HOU Zhi-yao,et al.Problems and Solutions of Nanomaterials in Antitumor Photothermal Therapy[J].Chinese Journal of Luminescence,2022,43(07):995-1013. DOI: 10.37188/CJL.20220118.
由于其非侵入性、时空可控性和高效性,光热治疗(PTT)在抗肿瘤治疗领域迅猛发展。然而,PTT存在的一些问题阻碍了其进一步的临床转化。鉴于此,本文首先简要介绍了光热转换原理和PTT抗肿瘤机制。随后着重总结了PTT在发展过程中遇到的问题和不足,并列举了相应的解决策略,主要包括:调控纳米材料的形貌、构建异质结结构、选择合适的光学窗口来提高纳米材料的光热转换效率;设计多模态协同治疗模式来克服单一PTT的局限性;提高纳米材料的肿瘤富集量来增强抗癌治疗效果;以及构建肿瘤微环境激活的光热转换试剂和设计低温PTT模式来提高纳米药物的生物安全性。最后,对PTT的未来前景和发展进行了展望。
Photothermal therapy(PTT) is developing rapidly in the field of antitumor therapy, due to its non-invasiveness, spatiotemporal controllability, and high efficiency. However, there are some practical problems in PTT, which hinder its further transition from basic scientific research to clinical applications. Herein, at first, this review briefly introduces the photothermal conversion principle and antitumor mechanism of PTT. Then, the main problems in the development of PTT are summarized, and those corresponding solutions are listed, including: enhancing the photothermal conversion efficiency by the control of nanomaterial morphology, the construction of heterojunction structures, and the adjustment of optical windows; overcoming the limitation of single PTT by the invention of collaborative treatment models; consolidating antitumor therapy effect by increasing tumor enrichment of nanomaterials; improving the biological safety of nanomedicine by the design of tumor microenvironment-activated photothermal complex and the realization of mild PTT. Finally, the future prospect and development of PTT are stated.
光热治疗光热转换效率协同治疗肿瘤微环境激活治疗低温热疗
photothermal therapyphotothermal conversion efficiencycollaborative therapytumor microenvironment-activated therapymild photothermal therapy
FERLAY J,COLOMBET M,SOERJOMATARAM I,et al. Cancer statistics for the year 2020:an overview [J]. Int. J. Cancer, 2021, 149(4):778-789.
GOTWALS P,CAMERON S,CIPOLLETTA D,et al. Prospects for combining targeted and conventional cancer therapy with immunotherapy [J]. Nat. Rev. Cancer, 2017,17(5):286-301. doi: 10.1038/nrc.2017.17http://dx.doi.org/10.1038/nrc.2017.17
LIU Z G,JIANG W,NAM J,et al. Immunomodulating nanomedicine for cancer therapy [J]. Nano Lett., 2018,18(11): 6655-6659. doi: 10.1021/acs.nanolett.8b02340http://dx.doi.org/10.1021/acs.nanolett.8b02340
SUN H L,ZHANG Y F,ZHONG Z Y. Reduction-sensitive polymeric nanomedicines: an emerging multifunctional platform for targeted cancer therapy [J]. Adv. Drug Delivery Rev., 2018,132:16-32. doi: 10.1016/j.addr.2018.05.007http://dx.doi.org/10.1016/j.addr.2018.05.007
GOLDBERG M S. Improving cancer immunotherapy through nanotechnology [J]. Nat. Rev. Cancer, 2019,19(10):587-602. doi: 10.1038/s41568-019-0186-9http://dx.doi.org/10.1038/s41568-019-0186-9
FANG J,ISLAM W,MAEDA H. Exploiting the dynamics of the EPR effect and strategies to improve the therapeutic effects of nanomedicines by using EPR effect enhancers [J]. Adv. Drug Delivery Rev., 2020,157:142-160. doi: 10.1016/j.addr.2020.06.005http://dx.doi.org/10.1016/j.addr.2020.06.005
DUAN L,YANG L,JIN J,et al. Micro/nano-bubble-assisted ultrasound to enhance the EPR effect and potential theranostic applications [J]. Theranostics, 2020,10(2):462-483. doi: 10.7150/thno.37593http://dx.doi.org/10.7150/thno.37593
LIU J,HUANG Y R,KUMAR A,et al. pH-sensitive nano-systems for drug delivery in cancer therapy [J]. Biotechnol. Adv., 2014,32(4):693-710. doi: 10.1016/j.biotechadv.2013.11.009http://dx.doi.org/10.1016/j.biotechadv.2013.11.009
MURA S,NICOLAS J,COUVREUR P. Stimuli-responsive nanocarriers for drug delivery [J]. Nat. Mater., 2013,12(11):991-1003. doi: 10.1038/nmat3776http://dx.doi.org/10.1038/nmat3776
GUO Y,RAN Y J,WANG Z X,et al. Magnetic-responsive and targeted cancer nanotheranostics by PA/MR bimodal imaging-guided photothermally triggered immunotherapy [J]. Biomaterials, 2019,219:119370-1-18. doi: 10.1016/j.biomaterials.2019.119370http://dx.doi.org/10.1016/j.biomaterials.2019.119370
KIM S,MOON M J,SURENDRAN S P,et al. Biomedical applications of hyaluronic acid-based nanomaterials in hyperthermic cancer therapy [J]. Pharmaceutics, 2019,11(7):306-1-19. doi: 10.3390/pharmaceutics11070306http://dx.doi.org/10.3390/pharmaceutics11070306
CHANG D,LIM M,GOOS J A C M,et al. Biologically targeted magnetic hyperthermia:potential and limitations [J]. Front. Pharmacol., 2018,9:831-1-20. doi: 10.3389/fphar.2018.00831http://dx.doi.org/10.3389/fphar.2018.00831
WU Q,XIA N,LONG D,et al. Dual-functional supernanoparticles with microwave dynamic therapy and microwave thermal therapy [J]. Nano Lett., 2019,19(8):5277-5286. doi: 10.1021/acs.nanolett.9b01735http://dx.doi.org/10.1021/acs.nanolett.9b01735
CANCHI D R,PASCHEK D,GARCÍA A E. Equilibrium study of protein denaturation by urea [J]. J. Am. Chem. Soc., 2010,132(7):2338-2344. doi: 10.1021/ja909348chttp://dx.doi.org/10.1021/ja909348c
LEPOCK J R. Role of nuclear protein denaturation and aggregation in thermal radiosensitization [J]. Int. J. Hyperthermia, 2004, 20(2):115-130. doi: 10.1080/02656730310001637334http://dx.doi.org/10.1080/02656730310001637334
KAMPINGA H H,BRUNSTING J F,STEGE G J J,et al. Thermal protein denaturation and protein aggregation in cells made thermotolerant by various chemicals:role of heat shock proteins [J]. Exp. Cell Res.,1995,219(2):536-546. doi: 10.1006/excr.1995.1262http://dx.doi.org/10.1006/excr.1995.1262
MEREDITH S C. Protein denaturation and aggregation [J]. Ann. N. Y. Acad. Sci., 2006,1066(1):181-221.
LIU Y J,BHATTARAI P,DAI Z F,et al. Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer [J]. Chem. Soc. Rev., 2019,48(7):2053-2108. doi: 10.1039/c8cs00618khttp://dx.doi.org/10.1039/c8cs00618k
LIU S,PAN X T,LIU H Y. Two-dimensional nanomaterials for photothermal therapy [J]. Angew. Chem. Int. Ed., 2020,59(15):5890-5900. doi: 10.1002/anie.201911477http://dx.doi.org/10.1002/anie.201911477
TSAI M F,CHANG S H G,CHENG F Y,et al. Au nanorod design as light-absorber in the first and second biological near-infrared windows for in vivo photothermal therapy [J]. ACS Nano, 2013,7(6):5330-5342. doi: 10.1021/nn401187chttp://dx.doi.org/10.1021/nn401187c
DU J F,WANG X,DONG X H,et al. Enhanced radiosensitization of ternary Cu3BiSe3 nanoparticles by photo-induced hyperthermia in the second near-infrared biological window [J]. Nanoscale, 2019,11(15):7157-7165. doi: 10.1039/c8nr09618jhttp://dx.doi.org/10.1039/c8nr09618j
YANG Q L,MA Z R,WANG H S,et al. Rational design of molecular fluorophores for biological imaging in the NIR-Ⅱ window [J]. Adv. Mater., 2017,29(12):1605497-1-9. doi: 10.1002/adma.201605497http://dx.doi.org/10.1002/adma.201605497
YIN W Y,BAO T,ZHANG X,et al. Biodegradable MoOx nanoparticles with efficient near-infrared photothermal and photodynamic synergetic cancer therapy at the second biological window [J]. Nanoscale, 2018,10(3):1517-1531. doi: 10.1039/c7nr07927chttp://dx.doi.org/10.1039/c7nr07927c
TAY Z W,CHANDRASEKHARAN P,CHIU-LAM A,et al. Magnetic particle imaging-guided heating in vivo using gradient fields for arbitrary localization of magnetic hyperthermia therapy [J]. ACS Nano, 2018,12(4):3699-3713. doi: 10.1021/acsnano.8b00893http://dx.doi.org/10.1021/acsnano.8b00893
LIU Y J,YANG Z,HUANG X L,et al. Glutathione-responsive self-assembled magnetic gold nanowreath for enhanced tumor imaging and imaging-guided photothermal therapy [J]. ACS Nano, 2018,12(8):8129-8137. doi: 10.1021/acsnano.8b02980http://dx.doi.org/10.1021/acsnano.8b02980
JIANG X X,ZHANG S H,REN F,et al. Ultrasmall magnetic CuFeSe2 ternary nanocrystals for multimodal imaging guided photothermal therapy of cancer [J]. ACS Nano, 2017,11(6):5633-5645. doi: 10.1021/acsnano.7b01032http://dx.doi.org/10.1021/acsnano.7b01032
JAQUE D,MAESTRO L M,ROSAL BDEL,et al. Nanoparticles for photothermal therapies [J]. Nanoscale, 2014,6(16):9494-9530. doi: 10.1039/c4nr00708ehttp://dx.doi.org/10.1039/c4nr00708e
TANG Y A,YANG T,WANG Q L,et al. Albumin-coordinated assembly of clearable platinum nanodots for photo-induced cancer theranostics [J]. Biomaterials, 2018,154:248-260. doi: 10.1016/j.biomaterials.2017.10.030http://dx.doi.org/10.1016/j.biomaterials.2017.10.030
DREADEN E C,ALKILANY A M,HUANG X H,et al. The golden age:gold nanoparticles for biomedicine [J]. Chem. Soc. Rev., 2012,41(7):2740-2779. doi: 10.1039/c1cs15237hhttp://dx.doi.org/10.1039/c1cs15237h
TAN C L,CAO X H,WU X J,et al. Recent advances in ultrathin two-dimensional nanomaterials [J]. Chem. Rev., 2017,117(9):6225-6331. doi: 10.1021/acs.chemrev.6b00558http://dx.doi.org/10.1021/acs.chemrev.6b00558
HUANG K,LI Z J,LIN J,et al. Two-dimensional transition metal carbides and nitrides(MXenes) for biomedical applications [J]. Chem. Soc. Rev., 2018,47(14):5109-5124. doi: 10.1039/c7cs00838dhttp://dx.doi.org/10.1039/c7cs00838d
CHEN Y W,SU Y L,HU S H,et al. Functionalized graphene nanocomposites for enhancing photothermal therapy in tumor treatment [J]. Adv. Drug Delivery Rev., 2016,105:190-204. doi: 10.1016/j.addr.2016.05.022http://dx.doi.org/10.1016/j.addr.2016.05.022
SONG X J,CHEN Q,LIU Z. Recent advances in the development of organic photothermal nano-agents [J]. Nano Res., 2015,8(2):340-354. doi: 10.1007/s12274-014-0620-yhttp://dx.doi.org/10.1007/s12274-014-0620-y
LI J C,RAO J H,PU K Y. Recent progress on semiconducting polymer nanoparticles for molecular imaging and cancer phototherapy [J]. Biomaterials, 2018,155:217-235. doi: 10.1016/j.biomaterials.2017.11.025http://dx.doi.org/10.1016/j.biomaterials.2017.11.025
JIANG Z Y,ZHANG C L,WANG X Q,et al. A borondifluoride-complex-based photothermal agent with an 80% photothermal conversion efficiency for photothermal therapy in the NIR-Ⅱ window [J]. Angew. Chem. Int. Ed., 2021,60(41):22376-22384. doi: 10.1002/anie.202107836http://dx.doi.org/10.1002/anie.202107836
王月,安西涛,任伟,等. 纳米金膜及金壳表面局域等离激元对上转换荧光波长的选择调控 [J]. 发光学报, 2019,40(6):743-750. doi: 10.3788/fgxb20194006.0743http://dx.doi.org/10.3788/fgxb20194006.0743
WANG Y,AN X T,REN W,et al. Wavelength dependent modulation of upconversion luminescence via localized surface plasmon resonance of gold nanofilm and nanoshell [J]. Chin. J. Lumin., 2019,40(6):743-750. (in Chinese). doi: 10.3788/fgxb20194006.0743http://dx.doi.org/10.3788/fgxb20194006.0743
GAO F C,SUN Z W,ZHAO L,et al. Bioactive engineered photothermal nanomaterials:from theoretical understanding to cutting-edge application strategies in anti-cancer therapy [J]. Mater. Chem. Front., 2021,5(14):5257-5297. doi: 10.1039/d1qm00402fhttp://dx.doi.org/10.1039/d1qm00402f
ZHOU Z,LI B W,SHEN C,et al. Metallic 1T phase enabling MoS2 nanodots as an efficient agent for photoacoustic imaging guided photothermal therapy in the near-infrared-II window [J]. Small, 2020,16(43):2004173. doi: 10.1002/smll.202004173http://dx.doi.org/10.1002/smll.202004173
TIAN Q W,TANG M H,SUN Y G,et al. Hydrophilic flower-like CuS superstructures as an efficient 980 nm laser-driven photothermal agent for ablation of cancer cells [J]. Adv. Mater., 2011,23(31):3542-3547. doi: 10.1002/adma.201101295http://dx.doi.org/10.1002/adma.201101295
WANG Z J,YU W J,YU N,et al. Construction of CuS@Fe-MOF nanoplatforms for MRI-guided synergistic photothermal-chemo therapy of tumors [J]. Chem. Eng. J., 2020,400:125877-1-11. doi: 10.1016/j.cej.2020.125877http://dx.doi.org/10.1016/j.cej.2020.125877
GENG P,YU N,MACHARIA D K,et al. MOF-derived CuS@Cu-MOF nanocomposites for synergistic photothermal-chemodynamic-chemo therapy [J]. Chem. Eng. J., 2022,441:135964. doi: 10.1016/j.cej.2022.135964http://dx.doi.org/10.1016/j.cej.2022.135964
CHEN Z G,WANG Q,WANG H L,et al. Ultrathin PEGylated W18O49 nanowires as a new 980 nm-laser-driven photothermal agent for efficient ablation of cancer cells in vivo [J]. Adv. Mater., 2013,25(14):2095-2100. doi: 10.1002/adma.201204616http://dx.doi.org/10.1002/adma.201204616
南福春,薛小矿,葛介超,等. 红光/近红外光响应碳点在肿瘤治疗中的应用进展 [J]. 发光学报, 2021,42(8):1155-1171. doi: 10.37188/CJL.20210163http://dx.doi.org/10.37188/CJL.20210163
NAN F C,XUE X K,GE J C,et al. Recent advances of red/near infrared light responsive carbon dots for tumor therapy [J]. Chin. J. Lumin., 2021,42(8):1155-1171. (in Chinese). doi: 10.37188/CJL.20210163http://dx.doi.org/10.37188/CJL.20210163
杨延强,黄金满,吴秋菊,等. 掺杂无机纳米超微粒的有机聚合物体系中的光折变效应 [J]. 发光学报, 1999,20(2):112-116. doi: 10.3321/j.issn:1000-7032.1999.02.005http://dx.doi.org/10.3321/j.issn:1000-7032.1999.02.005
YANG Y Q,HUANG J M,WU Q J,et al. Photorefractive effect in inorganic nanoparticles doped polymeric system [J]. Chin. J. Lumin., 1999,20(2):112-116. (in Chinese). doi: 10.3321/j.issn:1000-7032.1999.02.005http://dx.doi.org/10.3321/j.issn:1000-7032.1999.02.005
ZHAO L Y,LIU Y M,CHANG R,et al. Supramolecular photothermal nanomaterials as an emerging paradigm toward precision cancer therapy [J]. Adv. Funct. Mater., 2019,29(4):1806877-1-12. doi: 10.1002/adfm.201806877http://dx.doi.org/10.1002/adfm.201806877
SANZ B,CALATAYUD M P,TORRES T E,et al. Magnetic hyperthermia enhances cell toxicity with respect to exogenous heating [J]. Biomaterials, 2017,114:62-70. doi: 10.1016/j.biomaterials.2016.11.008http://dx.doi.org/10.1016/j.biomaterials.2016.11.008
SHCHORS K,EVAN G. Tumor angiogenesis:cause or consequence of cancer? [J]. Cancer Res., 2007,67(15):7059-7061. doi: 10.1158/0008-5472.can-07-2053http://dx.doi.org/10.1158/0008-5472.can-07-2053
BREN K L,RAVEN E L. Locked and loaded for apoptosis [J]. Science, 2017,356(6344):1236. doi: 10.1126/science.aan5587http://dx.doi.org/10.1126/science.aan5587
MILLERON R S,BRATTON S B. ‘Heated’ debates in apoptosis [J]. Cell. Mol. Life Sci., 2007,64(18):2329-2333. doi: 10.1007/s00018-007-7135-6http://dx.doi.org/10.1007/s00018-007-7135-6
HILDEBRANDT B,WUST P,AHLERS O,et al. The cellular and molecular basis of hyperthermia [J]. Crit. Rev. Oncol. Hematol., 2002,43(1):33-56. doi: 10.1016/s1040-8428(01)00179-2http://dx.doi.org/10.1016/s1040-8428(01)00179-2
SAMALI A,HOLMBERG C I,SISTONEN L,et al. Thermotolerance and cell death are distinct cellular responses to stress:dependence on heat shock proteins [J]. FEBS Lett.,1999,461(3):306-310. doi: 10.1016/s0014-5793(99)01486-6http://dx.doi.org/10.1016/s0014-5793(99)01486-6
CHERUKURI P,GLAZER E S,CURLEY S A. Targeted hyperthermia using metal nanoparticles [J]. Adv. Drug Delivery Rev., 2010,62(3):339-345. doi: 10.1016/j.addr.2009.11.006http://dx.doi.org/10.1016/j.addr.2009.11.006
CHANG M Y,HOU Z Y,WANG M,et al. Recent advances in hyperthermia therapy-based synergistic immunotherapy [J]. Adv. Mater., 2021,33(4):2004788-1-29. doi: 10.1002/adma.202004788http://dx.doi.org/10.1002/adma.202004788
KANG J K,KIM J C,SHIN Y,et al. Principles and applications of nanomaterial-based hyperthermia in cancer therapy [J]. Arch. Pharm. Res., 2020,43(1):46-57. doi: 10.1007/s12272-020-01206-5http://dx.doi.org/10.1007/s12272-020-01206-5
ZHENG X H,ZHOU F F,WU B Y,et al. Enhanced tumor treatment using biofunctional indocyanine green-containing nanostructure by intratumoral or intravenous injection [J]. Mol. Pharmaceutics, 2012,9(3):514-522. doi: 10.1021/mp200526mhttp://dx.doi.org/10.1021/mp200526m
HUANG X Q,TANG S H,MU X L,et al. Freestanding palladium nanosheets with plasmonic and catalytic properties [J]. Nat. Nanotechnol., 2011,6(1):28-32. doi: 10.1038/nnano.2010.235http://dx.doi.org/10.1038/nnano.2010.235
HU M,CHEN J Y,LI Z Y,et al. Gold nanostructures:engineering their plasmonic properties for biomedical applications [J]. Chem. Soc. Rev., 2006,35(11):1084-1094. doi: 10.1039/b517615hhttp://dx.doi.org/10.1039/b517615h
KIM J W,GALANZHA E I,SHASHKOV E V,et al. Golden carbon nanotubes as multimodal photoacoustic and photothermal high-contrast molecular agents [J]. Nat. Nanotechnol., 2009,4(10):688-694. doi: 10.1038/nnano.2009.231http://dx.doi.org/10.1038/nnano.2009.231
RASTINEHAD A R,ANASTOS H,WAJSWOL E,et al. Gold nanoshell-localized photothermal ablation of prostate tumors in a clinical pilot device study [J]. Proc. Natl. Acad. Sci. USA, 2019,116(37):18590-18596. doi: 10.1073/pnas.1906929116http://dx.doi.org/10.1073/pnas.1906929116
WANG Y C,BLACK K C L,LUEHMANN H,et al. Comparison study of gold nanohexapods,nanorods,and nanocages for photothermal cancer treatment [J]. ACS Nano, 2013,7(3):2068-2077. doi: 10.1021/nn304332shttp://dx.doi.org/10.1021/nn304332s
QU Y Q,DUAN X F. Progress,challenge and perspective of heterogeneous photocatalysts [J]. Chem. Soc. Rev., 2013,42(7):2568-2580. doi: 10.1039/c2cs35355ehttp://dx.doi.org/10.1039/c2cs35355e
YU N,PENG C,WANG Z J,et al. Dopant-dependent crystallization and photothermal effect of Sb-doped SnO2 nanoparticles as stable theranostic nanoagents for tumor ablation [J]. Nanoscale, 2018,10(5):2542-2554. doi: 10.1039/c7nr08811fhttp://dx.doi.org/10.1039/c7nr08811f
CHENG Y,CHANG Y,FENG Y L,et al. Deep-level defect enhanced photothermal performance of bismuth sulfide-gold heterojunction nanorods for photothermal therapy of cancer guided by computed tomography imaging [J]. Angew. Chem. Int. Ed., 2018,57(1):246-251. doi: 10.1002/anie.201710399http://dx.doi.org/10.1002/anie.201710399
CHANG M Y,WANG M F,CHEN Y Q,et al. Self-assembled CeVO4/Ag nanohybrid as photoconversion agents with enhanced solar-driven photocatalysis and NIR-responsive photothermal/photodynamic synergistic therapy performance [J]. Nanoscale, 2019,11(20):10129-10136. doi: 10.1039/c9nr02412chttp://dx.doi.org/10.1039/c9nr02412c
CHANG M Y,WANG M F,SHU M M,et al. Enhanced photoconversion performance of NdVO4/Au nanocrystals for photothermal/photoacoustic imaging guided and near infrared light-triggered anticancer phototherapy [J]. Acta Biomater., 2019,99:295-306. doi: 10.1016/j.actbio.2019.08.026http://dx.doi.org/10.1016/j.actbio.2019.08.026
CHANG M Y,HOU Z Y,WANG M,et al. Cu2MoS4/Au Heterostructures with enhanced catalase-like activity and photoconversion efficiency for primary/metastatic tumors eradication by phototherapy-induced immunotherapy [J]. Small, 2020,16(14):1907146-1-14. doi: 10.1002/smll.201907146http://dx.doi.org/10.1002/smll.201907146
DING X G,LIOW C H,ZHANG M X,et al. Surface plasmon resonance enhanced light absorption and photothermal therapy in the second near-infrared window [J]. J. Am. Chem. Soc., 2014,136(44):15684-15693. doi: 10.1021/ja508641zhttp://dx.doi.org/10.1021/ja508641z
MUHAMMED M A H,DÖBLINGER M,RODRÍGUEZ-FERNÁNDEZ J. Switching plasmons:gold nanorod-copper chalcogenide core-shell nanoparticle clusters with selectable metal/semiconductor NIR plasmon resonances [J]. J. Am. Chem. Soc., 2015,137(36):11666-11677. doi: 10.1021/jacs.5b05337http://dx.doi.org/10.1021/jacs.5b05337
GAO Q,ZHAO A W,GUO H Y,et al. Controlled synthesis of Au-Fe3O4 hybrid hollow spheres with excellent SERS activity and catalytic properties [J]. Dalton Trans., 2014,43(21):7998-8006. doi: 10.1039/c4dt00312hhttp://dx.doi.org/10.1039/c4dt00312h
HUANG J Z,LI J Q,ZHANG X F,et al. Artificial atomic vacancies tailor near-infrared Ⅱ excited multiplexing upconversion in core-shell lanthanide nanoparticles [J]. Nano Lett., 2020, 20(7):5236-5242. doi: 10.1021/acs.nanolett.0c01539http://dx.doi.org/10.1021/acs.nanolett.0c01539
LIU Y,ZHEN W Y,WANG Y H,et al. One-dimensional Fe2P acts as a fenton agent in response to NIR Ⅱ light and ultrasound for deep tumor synergetic theranostics [J]. Angew. Chem. Int. Ed., 2019,58(8):2407-2412. doi: 10.1002/anie.201813702http://dx.doi.org/10.1002/anie.201813702
LIN H,GAO S S,DAI C,et al. A two-dimensional biodegradable niobium carbide(MXene) for photothermal tumor eradication in NIR-Ⅰ and NIR-Ⅱ biowindows [J]. J. Am. Chem. Soc., 2017,139(45):16235-16247. doi: 10.1021/jacs.7b07818http://dx.doi.org/10.1021/jacs.7b07818
WU Z C,LI W P,LUO C H,et al. Rattle-type Fe3O4@CuS developed to conduct magnetically guided photoinduced hyperthermia at first and second NIR biological windows [J]. Adv. Funct. Mater., 2015,25(41):6527-6537. doi: 10.1002/adfm.201503015http://dx.doi.org/10.1002/adfm.201503015
JI M W,XU M,ZHANG W,et al. Structurally well-defined Au@Cu2-xS core-shell nanocrystals for improved cancer treatment based on enhanced photothermal efficiency [J]. Adv. Mater., 2016,28(16):3094-3101. doi: 10.1002/adma.201503201http://dx.doi.org/10.1002/adma.201503201
LIU J,WANG P Y,ZHANG X,et al. Rapid degradation and high renal clearance of Cu3BiS3 nanodots for efficient cancer diagnosis and photothermal therapy in vivo [J]. ACS Nano, 2016,10(4):4587-4598.
FAN W P,YUNG B,HUANG P,et al. Nanotechnology for multimodal synergistic cancer therapy [J]. Chem. Rev., 2017,117(22):13566-13638. doi: 10.1021/acs.chemrev.7b00258http://dx.doi.org/10.1021/acs.chemrev.7b00258
SUN H T,ZHANG Q,LI J C,et al. Near-infrared photoactivated nanomedicines for photothermal synergistic cancer therapy [J]. Nano Today, 2021,37:101073. doi: 10.1016/j.nantod.2020.101073http://dx.doi.org/10.1016/j.nantod.2020.101073
MENG Z Q,WEI F,WANG R H,et al. NIR-laser-switched in vivo smart nanocapsules for synergic photothermal and chemotherapy of tumors [J]. Adv. Mater., 2016,28(2):245-253. doi: 10.1002/adma.201502669http://dx.doi.org/10.1002/adma.201502669
MA N,ZHANG M K,WANG X S,et al. NIR light-triggered degradable MoTe2 nanosheets for combined photothermal and chemotherapy of cancer [J]. Adv. Funct. Mater., 2018,28(31):1801139-1-11. doi: 10.1002/adfm.201801139http://dx.doi.org/10.1002/adfm.201801139
YOUNIS M R,WANG C,AN R B,et al. Low power single laser activated synergistic cancer phototherapy using photosensitizer functionalized dual plasmonic photothermal nanoagents [J]. ACS Nano, 2019,13(2):2544-2557.
ZHU Y,WANG W Y,CHENG J J,et al. Stimuli-responsive manganese single-atom nanozyme for tumor therapy via integrated cascade reactions [J]. Angew. Chem. Int. Ed., 2021,60(17):9480-9488. doi: 10.1002/anie.202017152http://dx.doi.org/10.1002/anie.202017152
QIAO L,SUN Y J,HU Y J,et al. A tumor microenvironment-triggered and photothermal-enhanced nanocatalysis multimodal therapy platform for precise cancer therapy [J]. Chem. Mater., 2021,33(23):9334-9347. doi: 10.1021/acs.chemmater.1c03169http://dx.doi.org/10.1021/acs.chemmater.1c03169
HUANG W,HE L Z,ZHANG Z Y,et al. Shape-controllable tellurium-driven heterostructures with activated robust immunomodulatory potential for highly efficient radiophotothermal therapy of colon cancer [J]. ACS Nano, 2021,15(12):20225-20241. doi: 10.1021/acsnano.1c08237http://dx.doi.org/10.1021/acsnano.1c08237
CHANG M Y,WANG M,WANG M F,et al. A multifunctional cascade bioreactor based on hollow-structured Cu2MoS4 for synergetic cancer chemo-dynamic therapy/starvation therapy/phototherapy/immunotherapy with remarkably enhanced efficacy [J]. Adv. Mater., 2019,31(51):1905271-1-10. doi: 10.1002/adma.201905271http://dx.doi.org/10.1002/adma.201905271
WANG K Y,XIANG Y N,PAN W,et al. Dual-targeted photothermal agents for enhanced cancer therapy [J]. Chem. Sci., 2020,11(31):8055-8072. doi: 10.1039/d0sc03173ahttp://dx.doi.org/10.1039/d0sc03173a
HUO D,LIU S,ZHANG C,et al. Hypoxia-targeting,tumor microenvironment responsive nanocluster bomb for radical-enhanced radiotherapy [J]. ACS Nano, 2017,11(10):10159-10174. doi: 10.1021/acsnano.7b04737http://dx.doi.org/10.1021/acsnano.7b04737
SONG C H,XU W G,WEI Z,et al. Anti-LDLR modified TPZ@Ce6-PEG complexes for tumor hypoxia-targeting chemo-/radio-/photodynamic/photothermal therapy [J]. J. Mater. Chem. B, 2020,8(4):648-654. doi: 10.1039/c9tb02248ahttp://dx.doi.org/10.1039/c9tb02248a
QIN S Y,ZHANG A Q,ZHANG X Z. Recent advances in targeted tumor chemotherapy based on smart nanomedicines [J]. Small, 2018,14(45):1802417-1-24. doi: 10.1002/smll.201802417http://dx.doi.org/10.1002/smll.201802417
LI B,JIANG Z Y,XIE D Y,et al. Cetuximab-modified CuS nanoparticles integrating near-infrared-Ⅱ-responsive photothermal therapy and anti-vessel treatment [J]. Int. J. Nanomedicine, 2018,13:7289-7302. doi: 10.2147/ijn.s175334http://dx.doi.org/10.2147/ijn.s175334
WEN Y,SCHREIBER C L,SMITH B D. Dual-targeted phototherapeutic agents as magic bullets for cancer [J]. Bioconjugate Chem., 2020,31(3):474-482. doi: 10.1021/acs.bioconjchem.9b00836http://dx.doi.org/10.1021/acs.bioconjchem.9b00836
PAN L M,LIU J N,SHI J L. Nuclear-targeting gold nanorods for extremely low NIR activated photothermal therapy [J]. ACS Appl. Mater. Interfaces, 2017,9(19):15952-15961. doi: 10.1021/acsami.7b03017http://dx.doi.org/10.1021/acsami.7b03017
LI W,YANG J,LUO L H,et al. Targeting photodynamic and photothermal therapy to the endoplasmic reticulum enhances immunogenic cancer cell death [J]. Nat. Commun., 2019,10(1):3349-1-16. doi: 10.1038/s41467-019-11269-8http://dx.doi.org/10.1038/s41467-019-11269-8
DING B B,SHAO S,JIANG F,et al. MnO2-disguised upconversion hybrid nanocomposite:an ideal architecture for tumor microenvironment-triggered UCL/MR bioimaging and enhanced chemodynamic therapy [J]. Chem. Mater., 2019,31(7):2651-2660. doi: 10.1021/acs.chemmater.9b00893http://dx.doi.org/10.1021/acs.chemmater.9b00893
GAO G,SUN X B,LIANG G L. Nanoagent-promoted mild-temperature photothermal therapy for cancer treatment [J]. Adv. Funct. Mater., 2021,31(25):2100738-1-14. doi: 10.1002/adfm.202100738http://dx.doi.org/10.1002/adfm.202100738
PHILLIPS C N M,ZATARAIN J R,NICHOLLS M E,et al. Upregulation of cystathionine-β-synthase in colonic epithelia reprograms metabolism and promotes carcinogenesis [J]. Cancer Res., 2017,77(21):5741-5754. doi: 10.1158/0008-5472.can-16-3480http://dx.doi.org/10.1158/0008-5472.can-16-3480
AN L,WANG X D,RUI X C,et al. The in situ sulfidation of Cu2O by endogenous H2S for colon cancer theranostics [J]. Angew. Chem. Int. Ed., 2018,57(48):15782-15786. doi: 10.1002/anie.201810082http://dx.doi.org/10.1002/anie.201810082
TAO C,AN L,LIN J M,et al. Surface plasmon resonance-enhanced photoacoustic imaging and photothermal therapy of endogenous H2S-triggered Au@Cu2O [J]. Small, 2019,15(44):1903473-1-11. doi: 10.1002/smll.201903473http://dx.doi.org/10.1002/smll.201903473
CHANG M Y,HOU Z Y,JIN D Y,et al. Colorectal tumor microenvironment-activated bio-decomposable and metabolizable Cu2O@CaCO3 nanocomposites for synergistic oncotherapy [J]. Adv. Mater., 2020,32(43):2004647-1-11. doi: 10.1002/adma.202004647http://dx.doi.org/10.1002/adma.202004647
YANG K,ZHAO S J,LI B L,et al. Low temperature photothermal therapy:advances and perspectives [J]. Coord. Chem. Rev., 2022,454:214330. doi: 10.1016/j.ccr.2021.214330http://dx.doi.org/10.1016/j.ccr.2021.214330
YI X L,DUAN Q Y,WU F G. Low-temperature photothermal therapy:strategies and applications [J]. Research, 2021, 2021:9816594-1-38. doi: 10.34133/2021/9816594http://dx.doi.org/10.34133/2021/9816594
YANG Y,ZHU W J,DONG Z L,et al. 1D coordination polymer nanofibers for low-temperature photothermal therapy [J]. Adv. Mater., 2017,29(40):1703588-1-12. doi: 10.1002/adma.201703588http://dx.doi.org/10.1002/adma.201703588
WANG Z H,LI S W,ZHANG M,et al. Laser-triggered small interfering RNA releasing gold nanoshells against heat shock protein for sensitized photothermal therapy [J]. Adv. Sci., 2017,4(2):1600327-1-11. doi: 10.1002/advs.201600327http://dx.doi.org/10.1002/advs.201600327
CHEN W H,LUO G F,LEI Q,et al. Overcoming the heat endurance of tumor cells by interfering with the anaerobic glycolysis metabolism for improved photothermal therapy [J]. ACS Nano, 2017,11(2):1419-1431. doi: 10.1021/acsnano.6b06658http://dx.doi.org/10.1021/acsnano.6b06658
ZHOU Z J,YAN Y,HU K W,et al. Autophagy inhibition enabled efficient photothermal therapy at a mild temperature [J]. Biomaterials, 2017,141:116-124. doi: 10.1016/j.biomaterials.2017.06.030http://dx.doi.org/10.1016/j.biomaterials.2017.06.030
ZHOU Z J,YAN Y,WANG L,et al. Melanin-like nanoparticles decorated with an autophagy-inducing peptide for efficient targeted photothermal therapy [J]. Biomaterials, 2019, 203:63-72. doi: 10.1016/j.biomaterials.2019.02.023http://dx.doi.org/10.1016/j.biomaterials.2019.02.023
ZHANG X,DU J F,GUO Z,et al. Efficient near infrared light triggered nitric oxide release nanocomposites for sensitizing mild photothermal therapy [J]. Adv. Sci., 2019,6(3):1801122-1-10. doi: 10.1002/advs.201801122http://dx.doi.org/10.1002/advs.201801122
GASCHLER M M,STOCKWELL B R. Lipid peroxidation in cell death [J]. Biochem. Biophys. Res. Commun., 2017,482(3):419-425. doi: 10.1016/j.bbrc.2016.10.086http://dx.doi.org/10.1016/j.bbrc.2016.10.086
GÜRBÜZ G,HEINONEN M. LC-MS investigations on interactions between isolated β-lactoglobulin peptides and lipid oxidation product malondialdehyde [J]. Food Chem., 2015,175:300-305. doi: 10.1016/j.foodchem.2014.11.154http://dx.doi.org/10.1016/j.foodchem.2014.11.154
KAUR K,SALOMON R G,O’NEIL J,et al. (Carboxyalkyl)pyrroles in human plasma and oxidized low-density lipoproteins [J]. Chem. Res. Toxicol., 1997,10(12):1387-1396. doi: 10.1021/tx970112chttp://dx.doi.org/10.1021/tx970112c
CHANG M Y,HOU Z Y,WANG M,et al. Single-atom Pd nanozyme for ferroptosis-boosted mild-temperature photothermal therapy [J]. Angew. Chem. Int. Ed., 2021,60(23):12971-12979. doi: 10.1002/anie.202101924http://dx.doi.org/10.1002/anie.202101924
0
浏览量
375
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构