浏览全部资源
扫码关注微信
1.泉州师范学院物理与信息工程学院 福建省先进微纳光子技术与器件重点实验室, 福建 泉州 362000
2.泉州师范学院 化工与材料学院, 福建 泉州 362000
[ "苏子生(1981-),男,福建闽清人,博士,教授,2009年于中国科学院长春光学精密机械与物理研究所获得博士学位,主要从事有机光电材料与器件的研究。Email: suzs@qztc. edu. cn" ]
[ "王丽丹(1981-),女,吉林省吉林市人,博士,副教授,2011年于中国科学院长春光学精密机械与物理研究所获得博士学位,主要从事纳米半导体材料与器件的研究。" ]
纸质出版日期:2022-07-05,
收稿日期:2022-03-26,
修回日期:2022-04-13,
扫 描 看 全 文
苏子生,张璐,胡跃等.2D/3D混合Sn基钙钛矿/SnO2异质结光探测器[J].发光学报,2022,43(07):1121-1129.
SU Zi-sheng,ZHANG Lu,HU Yue,et al.Photodetectors Based on A 2D/3D Hybrid Tin Perovskite/SnO2 Heterojunction[J].Chinese Journal of Luminescence,2022,43(07):1121-1129.
苏子生,张璐,胡跃等.2D/3D混合Sn基钙钛矿/SnO2异质结光探测器[J].发光学报,2022,43(07):1121-1129. DOI: 10.37188/CJL.20220107.
SU Zi-sheng,ZHANG Lu,HU Yue,et al.Photodetectors Based on A 2D/3D Hybrid Tin Perovskite/SnO2 Heterojunction[J].Chinese Journal of Luminescence,2022,43(07):1121-1129. DOI: 10.37188/CJL.20220107.
制备了平面结构2D/3D混合钙钛矿(PEA)
0.15
FA
0.85
SnI
3
/SnO
2
异质结光探测器。研究发现,SnO
2
薄膜的引入可以调控(PEA)
0.15
FA
0.85
SnI
3
薄膜的晶体生长过程,有助于获得致密的连续薄膜。在520 nm单色光辐照下,器件的响应度高达3.19×10
5
A/W,相应的探测率为6.39×10
15
Jones。在808 nm单色光辐照下,器件的响应度和探测器率也可分别达到1.70×10
4
A/W和7.28×10
13
Jones。相关性能明显高于 (PEA)
0.15
FA
0.85
SnI
3
单层薄膜光探测器。器件性能的提高一方面是由于钙钛矿薄膜表面形貌的改善,提高了器件的吸收效率和载流子收集效率;另一方面是由于(PEA)
0.15
FA
0.85
SnI
3
和SnO
2
之间形成了p⁃n结结构,从而有效提高了钙钛矿薄膜中的光生电子⁃空穴对的分离效率,降低了电子和空穴的复合几率。同时,(PEA)
0.15
FA
0.85
SnI
3
/SnO
2
界面处特殊的能级结构也可诱导器件产生光电导增益。
Planar structure photodetector based on a 2D/3D hybrid perovskite (PEA)
0.15
FA
0.85
SnI
3
/SnO
2
heterojunction was constructed. It is found that the inserted SnO
2
layer can manipulate the crystal growth process of the (PEA)
0.15
FA
0.85
SnI
3
film, benefiting to form a dense and continued film. Under illumination of a 520 nm monochromatic light, the device shows a high response of 3.19×10
5
A/W, corresponding to a detectivity of 6.39×10
15
Jones. While under illumination of an 808 nm monochromatic light, the device also shows a response of 1.70×10
4
A/W and a detectivity of 7.28×10
13
Jones. These performances are dramatically higher than that device based on a simple (PEA)
0.15
FA
0.85
SnI
3
film.On the one hand, the improvements are attributed to the improved morphology of the perovskite film, which increases the absorption efficiency and charge carrier collection efficiency of the device;on the other hand, the formation of a p-n junction between (PEA)
0.15
FA
0.85
SnI
3
and SnO
2
effectively increases the dissociation efficiency of the photogenerated electron-hole pairs in the perovskite and decreases the recombination probability of the electrons and holes. Moreover, the special electronic structure at the (PEA)
0.15
FA
0.85
SnI
3
/SnO
2
interface may also trigger the device revealing a photoconduction gain.
光探测器Sn基钙钛矿异质结2D/3D混合结构SnO2
photodetectorSn perovskiteheterojunction2D/3D hybrid structureSnO2
STRANKS S D,EPERON G E,GRANCINI G,et al. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber [J]. Science, 2013,342(6156):341-344. doi: 10.1126/science.1243982http://dx.doi.org/10.1126/science.1243982
XING G C,MATHEWS N,SUN S Y,et al. Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3 [J]. Science, 2013,342(6156):344-347. doi: 10.1126/science.1243167http://dx.doi.org/10.1126/science.1243167
DONG Y H,ZOU Y S,SONG J Z,et al. Recent progress of metal halide perovskite photodetectors [J]. J. Mater. Chem. C, 2017,5(44):11369-11394. doi: 10.1039/c7tc03612dhttp://dx.doi.org/10.1039/c7tc03612d
MIAO J L,ZHANG F J. Recent progress on highly sensitive perovskite photodetectors [J]. J. Mater. Chem. C, 2019,7(7):1741-1791. doi: 10.1039/c8tc06089dhttp://dx.doi.org/10.1039/c8tc06089d
GU H,CHEN S C,ZHENG Q D. Emerging perovskite materials with different nanostructures for photodetectors [J]. Adv. Opt. Mater., 2020,9(5):2001637-1-32. doi: 10.1002/adom.202001637http://dx.doi.org/10.1002/adom.202001637
DONG R,FANG Y J,CHAE J,et al. High-gain and low-driving-voltage photodetectors based on organolead triiodide perovskites [J]. Adv. Mater., 2015,27(11):1912-1918. doi: 10.1002/adma.201405116http://dx.doi.org/10.1002/adma.201405116
LI S X,ZHANG G P,XIA H,et al. Template-confined growth of Ruddlesden-Popper perovskite micro-wire arrays for stable polarized photodetectors [J]. Nanoscale, 2019,11(39):18272-18281. doi: 10.1039/c9nr05396dhttp://dx.doi.org/10.1039/c9nr05396d
SHI Z J,GUO J,CHEN Y H,et al. Lead-free organic-inorganic hybrid perovskites for photovoltaic applications:recent advances and perspectives [J]. Adv. Mater., 2017,29(16):1605005-1-28. doi: 10.1002/adma.201605005http://dx.doi.org/10.1002/adma.201605005
LI Y,SHI Z F,LIANG W Q,et al. Recent advances toward environment-friendly photodetectors based on lead-free metal halide perovskites and perovskite derivatives [J]. Mater.Horiz., 2021,8(5):1367-1389. doi: 10.1039/d0mh01567ahttp://dx.doi.org/10.1039/d0mh01567a
ZHANG M M,ZHANG Z G,CAO H H,et al. Recent progress in inorganic tin perovskite solar cells [J]. Mater. Today Energy, 2022,23:100891-1-16. doi: 10.1016/j.mtener.2021.100891http://dx.doi.org/10.1016/j.mtener.2021.100891
WANG F,MA JL,XIE F Y,et al. Organic cation-dependent degradation mechanism of organotin halide perovskites [J]. Adv. Funct. Mater., 2016,26(20):3417-3423. doi: 10.1002/adfm.201505127http://dx.doi.org/10.1002/adfm.201505127
KUMAR M H,DHARANI S,LEONG W L,et al. Lead-free halide perovskite solar cells with high photocurrents realized through vacancy modulation [J]. Adv. Mater., 2014,26(41):7122-7127. doi: 10.1002/adma.201401991http://dx.doi.org/10.1002/adma.201401991
MARSHALL K P,WALKER M,WALTON R I,et al. Enhanced stability and efficiency in hole-transport-layer-free CsSnI3 perovskite photovoltaics [J]. Nat. Energy, 2016,1(12):16178-1-9. doi: 10.1038/nenergy.2016.178http://dx.doi.org/10.1038/nenergy.2016.178
YAO H H,ZHOU F G,LI Z Z,et al. Strategies for improving the stability of tin-based perovskite (ASnX3) solar cells [J]. Adv. Sci., 2020,7(10):1903540-1-17. doi: 10.1002/advs.201903540http://dx.doi.org/10.1002/advs.201903540
CAO D H,STOUMPOS C C,YOKOYAMA T,et al. Thin films and solar cells based on semiconducting two-dimensional Ruddlesden-Popper (CH3(CH2)3NH3)2(CH3NH3)n-1SnnI3n+1 perovskites [J]. ACS Energy Lett., 2017,2(5):982-990. doi: 10.1021/acsenergylett.7b00202http://dx.doi.org/10.1021/acsenergylett.7b00202
WANG H L,CHEN Y,LIM E,et al. High-performance lead-free two-dimensional perovskite photo transistors assisted by ferroelectric dielectrics [J]. J. Mater. Chem. C, 2018,6(46):12714-12720. doi: 10.1039/c8tc04691chttp://dx.doi.org/10.1039/c8tc04691c
QIAN L,SUN Y L,WU M M,et al. A lead-free two-dimensional perovskite for a high-performance flexible photoconductor and a light-stimulated synaptic device [J]. Nanoscale, 2018,10(15):6837-6843. doi: 10.1039/c8nr00914ghttp://dx.doi.org/10.1039/c8nr00914g
杨洁,皮明雨,张丁可,等. 低维钙钛矿光电探测器研究进展 [J]. 发光学报, 2021,42(6):755-773. doi: 10.37188/CJL.20210033http://dx.doi.org/10.37188/CJL.20210033
YANG J,PI M Y,ZHANG D K,et al. Recent progress on low-dimensional perovskite photodetectors [J]. Chin. J. Lumin., 2021,42(6):755-773. (in Chinese). doi: 10.37188/CJL.20210033http://dx.doi.org/10.37188/CJL.20210033
CHEN Y N,SUN Y,PENG J J,et al. 2D Ruddlesden-Popper perovskites for optoelectronics [J]. Adv. Mater., 2018,30(2):1703487-1-15. doi: 10.1002/adma.201703487http://dx.doi.org/10.1002/adma.201703487
ZHANG F,LU H P,TONG J H,et al. Advances in two-dimensional organic-inorganic hybrid perovskites [J]. Energy Environ. Sci., 2020,13(4):1154-1186. doi: 10.1039/c9ee03757hhttp://dx.doi.org/10.1039/c9ee03757h
RAN C X,XI J,GAO W Y,et al. Bilateral interface engineering toward efficient 2D-3D bulk heterojunction tin halide lead-free perovskite solar cells [J]. ACS Energy Lett., 2018,3(3):713-721. doi: 10.1021/acsenergylett.8b00085http://dx.doi.org/10.1021/acsenergylett.8b00085
SHAO S Y,LIU J,PORTALE G,et al. Highly reproducible Sn-based hybrid perovskite solar cells with 9% efficiency [J]. Adv. Energy Mater., 2018,8(4):1702019-1-10. doi: 10.1002/aenm.201702019http://dx.doi.org/10.1002/aenm.201702019
JIANG X Y,WANG F,WEI Q,et al. Ultra-high open-circuit voltage of tin perovskite solar cells via an electron transporting layer design [J]. Nat. Commun., 2020,11(1):1245-1-7. doi: 10.1038/s41467-020-15078-2http://dx.doi.org/10.1038/s41467-020-15078-2
QIU J,XIA Y D,ZHENG Y T,et al. 2D Intermediate suppression for efficient Ruddlesden-Popper(RP) phase lead-free perovskite solar cells [J]. ACS Energy Lett., 2019,4(7):1513-1520. doi: 10.1021/acsenergylett.9b00954http://dx.doi.org/10.1021/acsenergylett.9b00954
NISHIMURA K,KAMARUDIN M A,HIROTANI D,et al. Lead-free tin-halide perovskite solar cells with 13% efficiency [J]. Nano Energy, 2020,74:104858-1-10. doi: 10.1016/j.nanoen.2020.104858http://dx.doi.org/10.1016/j.nanoen.2020.104858
QIAN L,SUN Y L,SUN M X,et al. 2D Perovskite microsheets for high-performance photodetectors [J]. J. Mater. Chem. C, 2019,7(18):5353-5358. doi: 10.1039/c9tc00138ghttp://dx.doi.org/10.1039/c9tc00138g
YANG Y,ZHANG H F,HOU S M,et al. Sn-based quasi-two-dimensional organic-inorganic hybrid halide perovskite for high-performance photodetectors [J]. Appl. Phys. Lett., 2021,119(16):161106-1-7. doi: 10.1063/5.0068273http://dx.doi.org/10.1063/5.0068273
FU Q D,WANG X L,LIU F C,et al. Ultrathin Ruddlesden-Popper perovskite heterojunction for sensitive photodetection [J]. Small, 2019,15(39):e1902890-1-7. doi: 10.1002/smll.201902890http://dx.doi.org/10.1002/smll.201902890
MA C,SHI Y M,HU W J,et al. Heterostructured WS2/CH3NH3PbI3 photoconductors with suppressed dark current and enhanced photodetectivity [J]. Adv. Mater., 2016,28(19):3683-3689. doi: 10.1002/adma.201600069http://dx.doi.org/10.1002/adma.201600069
LIU H,ZHANG X W,ZHANG L Q,et al. A high-performance photodetector based on an inorganic perovskite-ZnO heterostructure [J]. J. Mater. Chem. C, 2017,5(25):6115-6122. doi: 10.1039/c7tc01998jhttp://dx.doi.org/10.1039/c7tc01998j
WU H R,SU Z S,JIN F M,et al. Improved performance of perovskite photodetectors based on a solution-processed CH3NH3PbI3/SnO2 heterojunction [J]. Org. Electron., 2018,57:206-210. doi: 10.1016/j.orgel.2018.03.018http://dx.doi.org/10.1016/j.orgel.2018.03.018
HUANG L K,SUN X M,LI C,et al. UV-sintered low-temperature solution-processed SnO2 as robust electron transport layer for efficient planar heterojunction perovskite solar cells [J]. ACS Appl. Mater. Interfaces, 2017,9(26):21909-21920. doi: 10.1021/acsami.7b04392http://dx.doi.org/10.1021/acsami.7b04392
LIU C K,TAI Q D,WANG N X,et al. Sn-based perovskite for highly sensitive photodetectors [J]. Adv. Sci., 2019,6(17):1900751-1-8. doi: 10.1002/advs.201900751http://dx.doi.org/10.1002/advs.201900751
LIU C K,TAI Q D,WANG N X,et al. Lead-free perovskite/organic semiconductor vertical heterojunction for highly sensitive photodetectors [J]. ACS Appl. Mater. Interfaces, 2020,12(16):18769-18776. doi: 10.1021/acsami.0c01202http://dx.doi.org/10.1021/acsami.0c01202
CHEN C,ZHANG X Q,WU G,et al. Visible-light ultrasensitive solution-prepared layered organic-inorganic hybrid perovskite field-effect transistor [J]. Adv. Opt. Mater., 2017,5(2):1600539-1-5. doi: 10.1002/adom.201600539http://dx.doi.org/10.1002/adom.201600539
WANG L D,XIAO Y M. Substrate depended chemical composition segregation and electrical property of perovskite films [J]. J. Alloys Compd., 2022,902:163797. doi: 10.1016/j.jallcom.2022.163797http://dx.doi.org/10.1016/j.jallcom.2022.163797
ZHAO Y C,ZHOU W K,ZHOU X,et al. Quantification of light-enhanced ionic transport in lead iodide perovskite thin films and its solar cell applications [J]. Light Sci. Appl., 2017,6(5):e16243-1-8. doi: 10.1038/lsa.2016.243http://dx.doi.org/10.1038/lsa.2016.243
TAKAHASHI Y,HASEGAWA H,TAKAHASHI Y,et al. Hall mobility in tin iodide perovskite CH3NH3SnI3:evidence for a doped semiconductor [J]. J. Solid State Chem., 2013, 205:39-43. doi: 10.1016/j.jssc.2013.07.008http://dx.doi.org/10.1016/j.jssc.2013.07.008
SONG J X,ZHENG E Q,BIAN J,et al. Low-temperature SnO2-based electron selective contact for efficient and stable perovskite solar cells [J]. J. Mater. Chem. A, 2015,3(20):10837-10844. doi: 10.1039/c5ta01207dhttp://dx.doi.org/10.1039/c5ta01207d
TOSADO G A,ZHENG E J,YU Q M. Tuning cesium-guanidinium in formamidinium tin triiodide perovskites with an ethylenediammonium additive for efficient and stable lead-free perovskite solar cells [J]. Mater. Adv., 2020,1(9):3507-3517. doi: 10.1039/d0ma00520ghttp://dx.doi.org/10.1039/d0ma00520g
0
浏览量
146
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构