浏览全部资源
扫码关注微信
华南理工大学 发光材料与器件国家重点实验室, 广东 广州 510641
[ "肖毅(1997-),男,四川巴中人,硕士研究生, 2019年于华南理工大学获得学士学位,主要从事量子点发光显示器件的研究。Email: 1129659135@qq.com" ]
[ "彭俊彪(1962-),男,山东宁津人,博 士,教授,博士生导师,1993 年于中国科学院长春物理研究所获得博士学位,主要从事发光显示器件与物理的研究。Email:psjbpeng@scut.edu.cn" ]
纸质出版日期:2022-06-05,
收稿日期:2022-03-22,
修回日期:2022-04-08,
扫 描 看 全 文
肖毅,李丹阳,罗宇等.共掺Rb+和Zn2+蓝光钙钛矿量子点及其发光二极管[J].发光学报,2022,43(06):901-910.
XIAO Yi,LI Dan-yang,LUO Yu,et al.Blue Perovskite Quantum Dot Co-doped with Rb+/Zn2+ and Its Light Emitting Diodes[J].Chinese Journal of Luminescence,2022,43(06):901-910.
肖毅,李丹阳,罗宇等.共掺Rb+和Zn2+蓝光钙钛矿量子点及其发光二极管[J].发光学报,2022,43(06):901-910. DOI: 10.37188/CJL.20220097.
XIAO Yi,LI Dan-yang,LUO Yu,et al.Blue Perovskite Quantum Dot Co-doped with Rb+/Zn2+ and Its Light Emitting Diodes[J].Chinese Journal of Luminescence,2022,43(06):901-910. DOI: 10.37188/CJL.20220097.
共掺Rb
+
、Zn
2+
得到了(Cs
0.8
Rb
0.2
)(Pb
0.93
Zn
0.07
)(Br
1.8
Cl
1.2
)蓝光钙钛矿量子点。相比未掺杂的CsPb(Br
1.8
Cl
1.2
)量子点,Rb
+
、Zn
2+
与卤素离子(Br
-
、Cl
-
)形成更加稳定的钙钛矿八面体晶型,抑制了Cl
-
空位缺陷的形成,提高了量子点的稳定性。掺杂后的量子点溶液光致发光效率从未掺杂的5%显著提高到52%,同时辐射复合也得到了显著增强。Rb
+
、Zn
2+
共掺使量子点的HOMO能级上移0.31 eV,降低了从空穴传输层(HTL)到发光层(EML)的注入势垒,有利于空穴注入。基于Rb
+
、Zn
2+
共掺的蓝光钙钛矿量子点,设计了结构为ITO/PEDOT∶PSS/TFB/Pe⁃QDs/TPBi/LiF/Al的发光二极管器件,得到发光峰位于470 nm、半峰宽为19 nm的蓝光发射,最大外量子效率(EQE
max
)达到3.55%。
(Cs
0.8
Rb
0.2
)(Pb
0.93
Zn
0.07
)(Br
1.8
Cl
1.2
) blue light perovskite quantum dots were obtained by co-doping Rb
+
and Zn
2+
. Compared with undoped CsPb(Br
1.8
Cl
1.2
) quantum dots, Rb
+
, Zn
2+
and halogen ions (Br
-
, Cl
-
) form a more stable perovskite octahedral crystal, which inhibits the formation of Cl
-
vacancy defects, which improves the stability of quantum dots. The photoluminescence efficiency of the doped quantum dot solution was significantly improved from the undoped 5% to 52%, and the radiative recombination was also significantly enhanced. The co-doping of Rb
+
and Zn
2+
shifts the HOMO level of the quantum dots up by 0.31 eV, which reduces the injection barrier from the hole transport layer (HTL) to the emissive layer (EML), which is beneficial to hole injection. Based on blue perovskite quantum dots co-doped with Rb
+
and Zn
2+
, a light-emitting device with the structure of ITO/PEDOT∶PSS/TFB/Pe-QDs/TPBi/LiF/Al was designed. For blue light emission at 19 nm, the maximum external quantum efficiency(EQE
max
) reaches 3.55%.
钙钛矿量子点蓝光发射Rb+、Zn2+掺杂晶格适配
perovskite quantum dotsblue emissionRb+, Zn2+ dopinglattice adaptation
PROTESESCU L,YAKUNIN S,BODNARCHUK M I,et al. Nanocrystals of cesium lead halide perovskites(CsPbX3,X = Cl,Br,and I): novel optoelectronic materials showing bright emission with wide color gamut [J]. Nano Lett., 2015,15(6):3692-3696. doi: 10.1021/nl5048779http://dx.doi.org/10.1021/nl5048779
NEDELCU G,PROTESESCU L,YAKUNIN S,et al. Fast anion-exchange in highly luminescent nanocrystals of cesium lead halide perovskites(CsPbX3,X= Cl,Br,I) [J]. Nano Lett., 2015,15(8):5635-5640. doi: 10.1021/acs.nanolett.5b02404http://dx.doi.org/10.1021/acs.nanolett.5b02404
MENG F Y,LIU X Y,CAI X Y,et al. Incorporation of rubidium cations into blue perovskite quantum dot light-emitting diodes via FABr-modified multi-cation hot-injection method [J]. Nanoscale, 2019,11(3):1295-1303. doi: 10.1039/c8nr07907bhttp://dx.doi.org/10.1039/c8nr07907b
SONG J Z,LI J H,XU L M,et al. Room-temperature triple-ligand surface engineering synergistically boosts ink stability,recombination dynamics,and charge injection toward EQE-11.6% perovskite QLEDs [J]. Adv. Mater., 2018,30(30):1800764-1-7. doi: 10.1002/adma.201800764http://dx.doi.org/10.1002/adma.201800764
PAN G C,BAI X,XU W,et al. Bright blue light emission of Ni2+ ion-doped CsPbClxBr3-x perovskite quantum dots enabling efficient light-emitting devices [J]. ACS Appl. Mater. Interfaces, 2020,12(12):14195-14202. doi: 10.1021/acsami.0c01074http://dx.doi.org/10.1021/acsami.0c01074
CHIBA T,ISHIKAWA S,SATO J,et al. Blue perovskite nanocrystal light-Emitting devices via the ligand exchange with adamantane diamine [J]. Adv. Opt. Mater., 2020,8(13):2000289-1-7. doi: 10.1002/adom.202000289http://dx.doi.org/10.1002/adom.202000289
WANG F Z,WANG Z Y,SUN W D,et al. High performance quasi-2D perovskite sky-blue light-emitting diodes using a dual-digand strategy [J]. Small, 2020,16(32):2002940-1-8. doi: 10.1002/smll.202002940http://dx.doi.org/10.1002/smll.202002940
DONG Y T,WANG Y K,YUAN F L,et al. Bipolar-shell resurfacing for blue LEDs based on strongly confined perovskite quantum dots [J]. Nat. Nanotechnol., 2020,15(8):668-674. doi: 10.1038/s41565-020-0714-5http://dx.doi.org/10.1038/s41565-020-0714-5
WANG Y K,SINGH K,LI J Y,et al. In situ inorganic ligand replenishment enables bandgap stability in mixed-halide perovskite quantum dot solids [J]. Adv. Mater., 2022,doi:10.1002/adma.202200854http://dx.doi.org/10.1002/adma.202200854.
LIU Y,LI Z L,XU J,et al. Wide-bandgap perovskite quantum dots in perovskite matrix for sky-blue light-emitting diodes [J]. J. Am. Chem. Soc., 2022,144(9):4009-4016. doi: 10.1021/jacs.1c12556http://dx.doi.org/10.1021/jacs.1c12556
LUO C,YAN C,LI W,et al. Ultrafast thermodynamic control for stable and efficient mixed halide perovskite nanocrystals [J]. Adv. Funct. Mater., 2020,30(19):2000026-1-9. doi: 10.1002/adfm.202000026http://dx.doi.org/10.1002/adfm.202000026
BI C H,YAO Z W,SUN X J,et al. Perovskite quantum dots with ultralow trap density by acid etching-driven ligand exchange for high luminance and stable pure-blue light-emitting diodes [J]. Adv. Mater., 2021,33(15):2006722-1-8. doi: 10.1002/adma.202006722http://dx.doi.org/10.1002/adma.202006722
DONG Y T,QIAO T,KIM D,et al. Precise control of quantum confinement in cesium lead halide perovskite quantum dots via thermodynamic equilibrium [J]. Nano Lett., 2018,18(6):3716-3722. doi: 10.1021/acs.nanolett.8b00861http://dx.doi.org/10.1021/acs.nanolett.8b00861
CAI T,WANG J Y,LI W H,et al. Mn2+/Yb3+codoped CsPbCl3 perovskite nanocrystals with triple-wavelength emission for luminescent solar concentrators [J]. Adv. Sci., 2020,7(18):2001317-1-9. doi: 10.1002/advs.202001317http://dx.doi.org/10.1002/advs.202001317
THAPA S,ADHIKARI G C,ZHU H Y,et al. Zn-alloyed all-inorganic halide perovskite-based white light-emitting diodes with superior color quality [J]. Sci. Rep., 2019,9(1):18636-1-10. doi: 10.1038/s41598-019-55228-1http://dx.doi.org/10.1038/s41598-019-55228-1
ADHIKARI G C,THAPA S,ZHU H Y,et al. Mg2+-alloyed all-inorganic halide perovskites for white light-emitting diodes by 3D-printing method [J]. Adv. Opt. Mater., 2019,7(20):1900916-1-9. doi: 10.1002/adom.201900916http://dx.doi.org/10.1002/adom.201900916
CHIBA T,SATO J,ISHIKAWA S,et al. Neodymium chloride-doped perovskite nanocrystals for efficient blue light-emitting devices [J]. ACS Appl. Mater. Interfaces, 2020,12(48):53891-53898. doi: 10.1021/acsami.0c11736http://dx.doi.org/10.1021/acsami.0c11736
王志斌,朱晓东,贾浩然,等. 蓝光钙钛矿发光二极管:从材料制备到器件优化 [J]. 发光学报, 2020,41(8):879-898. doi: 10.37188/fgxb20204108.0879http://dx.doi.org/10.37188/fgxb20204108.0879
WANG Z B,ZHU X D,JIA H R,et al. Blue perovskite light-emitting diodes:from material preparation to device optimization [J]. Chin. J. Lumin., 2020,41(8):879-898. (in Chinese). doi: 10.37188/fgxb20204108.0879http://dx.doi.org/10.37188/fgxb20204108.0879
HOU S C,GANGISHETTY M K,QUAN Q M,et al. Efficient blue and white perovskite light-emitting diodes via manganese doping [J]. Joule, 2018,2(11):2421-2433. doi: 10.1016/j.joule.2018.08.005http://dx.doi.org/10.1016/j.joule.2018.08.005
PAN J Y,ZHAO Z H,FANG F,et al. Multiple cations enhanced defect passivation of blue perovskite quantum dots enabling efficient light-emitting diodes [J]. Adv. Opt. Mater., 2020,8(24):2001494. doi: 10.1002/adom.202001494http://dx.doi.org/10.1002/adom.202001494
SOUFIANI A M,HUANG F Z,REECE P,et al. Polaronic exciton binding energy in iodide and bromide organic-inorganic lead halide perovskites [J]. Appl. Phys. Lett., 2015,107(23):231902-1-5. doi: 10.1063/1.4936418http://dx.doi.org/10.1063/1.4936418
XU L M,LI J H,CAI B,et al. A bilateral interfacial passivation strategy promoting efficiency and stability of perovskite quantum dot light-emitting diodes [J]. Nat. Commun., 2020,11(1):3902-1-12. doi: 10.1038/s41467-020-17633-3http://dx.doi.org/10.1038/s41467-020-17633-3
ZHANG J B,FAN L W,LI J L,et al. Growth mechanism of CsPbBr3 perovskite nanocrystals by a co-precipitation method in a CSTR system [J]. Nano Res., 2019,12(1):121-127. doi: 10.1007/s12274-018-2190-xhttp://dx.doi.org/10.1007/s12274-018-2190-x
YUAN F,RAN C X,ZHANG L,et al. A Cocktail of multiple cations in inorganic halide perovskite toward efficient and highly stable blue light-emitting diodes [J]. ACS Energy Lett., 2020,5(4):1062-1069. doi: 10.1021/acsenergylett.9b02562http://dx.doi.org/10.1021/acsenergylett.9b02562
DE ROO J,IBÁÑEZ M,GEIREGAT P,et al. Highly dynamic ligand binding and light absorption coefficient of cesium lead bromide perovskite nanocrystals [J]. ACS Nano, 2016,10(2):2071-2081. doi: 10.1021/acsnano.5b06295http://dx.doi.org/10.1021/acsnano.5b06295
KIM B H,NAM S,OH N,et al. Multilayer transfer printing for pixelated,multicolor quantum dot light-emitting diodes [J]. ACS Nano, 2016,10(5):4920-4925. doi: 10.1021/acsnano.5b06387http://dx.doi.org/10.1021/acsnano.5b06387
WEI C T,SU W M,LI J T,et al. A universal ternary-solvent-ink strategy toward efficient inkjet‐printed perovskite quantum dot light-emitting diodes [J]. Adv. Mater., 2022,34(10):2107798-1-12. doi: 10.1002/adma.202107798http://dx.doi.org/10.1002/adma.202107798
0
浏览量
296
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构