浏览全部资源
扫码关注微信
华南理工大学 发光材料与器件国家重点实验室, 广东 广州 510641
[ "刘森坤(1996-),男,江西赣州人,硕士研究生,2019年于南昌大学获得学士学位,主要从事量子点发光显示器件的研究。" ]
[ "彭俊彪(1962-),男,山东宁津人,博 士,教授,博士生导师,1993 年于中国科学院长春物理研究所获得博士学位,主要从事发光显示器件与物理的研究。Email:psjbpeng@scut.edu.cn" ]
纸质出版日期:2022-06-05,
收稿日期:2022-03-14,
修回日期:2022-03-29,
移动端阅览
刘森坤,罗宇,王俊杰等.掺杂聚乙烯咔唑绿光磷化铟量子点发光二极管[J].发光学报,2022,43(06):891-900.
LIU Sen-kun,LUO Yu,WANG Jun-jie,et al.Green InP Quantum Dot Light‑emitting Diode with PVK Blend in Emitting Layer[J].Chinese Journal of Luminescence,2022,43(06):891-900.
刘森坤,罗宇,王俊杰等.掺杂聚乙烯咔唑绿光磷化铟量子点发光二极管[J].发光学报,2022,43(06):891-900. DOI: 10.37188/CJL.20220086.
LIU Sen-kun,LUO Yu,WANG Jun-jie,et al.Green InP Quantum Dot Light‑emitting Diode with PVK Blend in Emitting Layer[J].Chinese Journal of Luminescence,2022,43(06):891-900. DOI: 10.37188/CJL.20220086.
设计了空穴传输材料聚乙烯基咔唑(PVK)与绿光无镉磷化铟(InP)量子点共混体系,改善了量子点团聚效应,减少了量子点之间相互作用产生的非辐射Förster能量转移(FRET),提高了共混无镉量子点薄膜的光致发光效率(PLQY),从24.2%提升至30.1%。同时,PVK的掺入提高了共混发光薄膜的空穴传输性能,改善了量子点电致发光器件的载流子平衡,使器件的最大外量子效率(EQE)达到5.94%,较未掺杂器件提高了32%。该聚合物掺杂方法可为研制高性能绿光InP量子点发光二极管提供参考。
A hybrid system of polyvinylcarbazole(PVK) and green indium phosphide(InP) quantum dots was designed to produce efficient light-emitting diodes(LEDs). PVK functions as not only disperse quantum dots well and reduce agglomeration, but also significantly reduce non-radiative Förster energy transfer(FRET) among quantum dots, and improve the film’s photoluminescence efficiency(PLQY) from 24.2% to 30.1%. Meanwhile, the incorporation of PVK can improve the hole transport performance of the QD film
via
the carrier balance of the devices, making the maximum external quantum efficiency(EQE) of the devices reach 5.94%, which is 32% higher than that of the devices without PVK. This method can provide a reference for the development of high performance green InP QD-LEDs.
磷化铟量子点聚合物掺杂能量转移载流子平衡
InP quantum dotpolymer blendenergy transfercharge balance
DE ARQUER F P G,TALAPIN D V,KLIMOV V I,et al. Semiconductor quantum dots: technological progress and future challenges [J]. Science, 2021,373(6555):640-1-14. doi: 10.1126/science.aaz8541http://dx.doi.org/10.1126/science.aaz8541
YUAN Q L,WANG T,YU P L,et al. A review on the electroluminescence properties of quantum-dot light-emitting diodes [J]. Org. Electron., 2021,90:106086-1-23. doi: 10.1016/j.orgel.2021.106086http://dx.doi.org/10.1016/j.orgel.2021.106086
SONG J J,WANG O Y,SHEN H B,et al. Over 30% external quantum efficiency light-emitting diodes by engineering quantum dot-assisted energy level match for hole transport layer [J]. Adv. Funct. Mater., 2019,29(33):1808377-1-9. doi: 10.1002/adfm.201808377http://dx.doi.org/10.1002/adfm.201808377
LI X Y,LIN Q L,SONG J J,et al. Quantum-dot light-emitting diodes for outdoor displays with high stability at high brightness [J]. Adv. Opt. Mater., 2019,8(2):1901145-1-9. doi: 10.1002/adom.201901145http://dx.doi.org/10.1002/adom.201901145
WANG L S,LIN J,HU Y S,et al. Blue quantum dot light-emitting diodes with high electroluminescent efficiency [J]. ACS Appl. Mater. Interfaces, 2017,9(44):38755-38760. doi: 10.1021/acsami.7b10785http://dx.doi.org/10.1021/acsami.7b10785
LI L,REISS P. One-pot synthesis of highly luminescent InP/ZnS nanocrystals without precursor injection [J]. J. Am. Chem. Soc., 2008,130(35):11588-11589. doi: 10.1021/ja803687ehttp://dx.doi.org/10.1021/ja803687e
XIE R G,BATTAGLIA D,PENG X G. Colloidal InP nanocrystals as efficient emitters covering blue to near-infrared [J]. J. Am. Chem. Soc., 2007,129(50):15432-15433. doi: 10.1021/ja076363hhttp://dx.doi.org/10.1021/ja076363h
LIM J,PARK M,BAE W K,et al. Highly efficient cadmium-free quantum dot light-emitting diodes enabled by the direct formation of excitons within InP@ZnSeS quantum dots [J]. ACS Nano, 2013,7(10):9019-9026. doi: 10.1021/nn403594jhttp://dx.doi.org/10.1021/nn403594j
WON Y H,CHO O,KIM T,et al. Highly efficient and stable InP/ZnSe/ZnS quantum dot light-emitting diodes [J]. Nature, 2019,575(7784):634-638. doi: 10.1038/s41586-019-1771-5http://dx.doi.org/10.1038/s41586-019-1771-5
DÜMBGEN K C,ZITO J,INFANTE I,et al. Shape,electronic structure,and trap states in indium phosphide quantum dots [J]. Chem. Mater., 2021,33(17):6885-6896. doi: 10.1021/acs.chemmater.1c01795http://dx.doi.org/10.1021/acs.chemmater.1c01795
JANG E,KIM Y,WON Y H,et al. Environmentally friendly InP-based quantum dots for efficient wide color gamut displays [J]. ACS Energy Lett., 2020,5(4):1316-1327. doi: 10.1021/acsenergylett.9b02851http://dx.doi.org/10.1021/acsenergylett.9b02851
LIU P,LOU Y J,DING S H,et al. Green InP/ZnSeS/ZnS core multi-shelled quantum dots synthesized with aminophosphine for effective display applications [J]. Adv. Funct. Mater., 2021,31(11):2008453-1-7. doi: 10.1002/adfm.202008453http://dx.doi.org/10.1002/adfm.202008453
WU Z H,LIU P,ZHANG W D,et al. Development of InP quantum dot-based light-emitting diodes [J]. ACS Energy Lett., 2020,5(4):1095-1106. doi: 10.1021/acsenergylett.9b02824http://dx.doi.org/10.1021/acsenergylett.9b02824
ZHANG H,HU N,ZENG Z P,et al. High-efficiency green InP quantum dot-based electroluminescent device comprising thick-shell quantum dots [J]. Adv. Opt. Mater., 2019,7(7):1801602-1-9. doi: 10.1002/adom.201801602http://dx.doi.org/10.1002/adom.201801602
WU Z H,ZHANG W D,LIU P,et al. 51-3:Efficient InP/ZnS quantum dot light-emitting diodes with improved electron confinement [J]. SID Symp. Dig. Tech. Pap., 2020,51(1):754-757. doi: 10.1002/sdtp.13978http://dx.doi.org/10.1002/sdtp.13978
CHAO W C,CHIANG T H,LIU Y C,et al. High efficiency green InP quantum dot light-emitting diodes by balancing electron and hole mobility [J]. Commun. Mater., 2021,2(1):96-1-11. doi: 10.1038/s43246-021-00203-5http://dx.doi.org/10.1038/s43246-021-00203-5
MOON H,LEE W,KIM J,et al. Composition-tailored ZnMgO nanoparticles for electron transport layers of highly efficient and bright InP-based quantum dot light emitting diodes [J]. Chem. Commun., 2019,55(88):13299-13302. doi: 10.1039/c9cc06882ahttp://dx.doi.org/10.1039/c9cc06882a
LEE T,HAHM D,KIM K,et al. Highly efficient and bright inverted top-emitting InP quantum dot light-emitting diodes introducing a hole-suppressing interlayer [J]. Small, 2019,15(50):1905162-1-7. doi: 10.1002/smll.201905162http://dx.doi.org/10.1002/smll.201905162
KAGAN C R,MURRAY C B,BAWENDI M G. Long-range resonance transfer of electronic excitations in close-packed CdSe quantum-dot solids [J]. Phys. Rev. B,1996,54(12):8633-8643. doi: 10.1103/physrevb.54.8633http://dx.doi.org/10.1103/physrevb.54.8633
LUNZ M,BRADLEY A L,CHEN W Y,et al. Influence of quantum dot concentration on Förster resonant energy transfer in monodispersed nanocrystal quantum dot monolayers [J]. Phys. Rev. B, 2010,81(20):205316-1-30. doi: 10.1103/physrevb.81.205316http://dx.doi.org/10.1103/physrevb.81.205316
CHOU K F,DENNIS A M. Förster resonance energy transfer between quantum dot donors and quantum dot acceptors [J]. Sensors, 2015,15(6):13288-13325. doi: 10.3390/s150613288http://dx.doi.org/10.3390/s150613288
SONG T,CHEONG J Y,CHO H,et al. Mixture of quantum dots and ZnS nanoparticles as emissive layer for improved quantum dots light emitting diodes [J]. RSC Adv., 2019,9(27):15177-15183. doi: 10.1039/c9ra01462dhttp://dx.doi.org/10.1039/c9ra01462d
ZHANG H,SU Q,CHEN S M. Suppressing Förster resonance energy transfer in close-packed quantum-dot thin film:toward efficient quantum-dot light-emitting diodes with external quantum efficiency over 21.6% [J]. Adv. Opt. Mater., 2020,8(10):1902092-1-7. doi: 10.1002/adom.201902092http://dx.doi.org/10.1002/adom.201902092
HAN M G,LEE Y,KWON H I,et al. InP-based quantum dot light-emitting diode with a blended emissive layer [J]. ACS Energy Lett., 2021,6(4):1577-1585.
IWASAKI Y,MOTOMURA G,OGURA K,et al. Efficient green InP quantum dot light-emitting diodes using suitable organic electron-transporting materials [J]. Appl. Phys. Lett., 2020,117(11):111104-1-4. doi: 10.1063/5.0020742http://dx.doi.org/10.1063/5.0020742
LEE E M Y,TISDALE W A. Determination of exciton diffusion length by transient photoluminescence quenching and its application to quantum dot films [J]. J. Phys. Chem. C, 2015,119(17):9005-9015. doi: 10.1021/jp512634chttp://dx.doi.org/10.1021/jp512634c
LIN Y C,WANG W J,CHUNG H L,et al. Effect of donor-acceptor concentration ratios on nonradiative energy transfer in closely packed CdTe quantum dots [J]. Appl. Phys. Lett., 2009,95(13):133123-1-3. doi: 10.1063/1.3242371http://dx.doi.org/10.1063/1.3242371
李婕婕. PbS量子点荧光寿命的实验测量 [D]. 杭州:浙江工业大学, 2017. doi: 10.3788/AOS201737.0130001http://dx.doi.org/10.3788/AOS201737.0130001
LI J J. Experimental Measurement of Photoluminescence Lifetime of PbS Quantum Dots [D]. Hangzhou:Zhejiang University of Technology, 2017. (in Chinese). doi: 10.3788/AOS201737.0130001http://dx.doi.org/10.3788/AOS201737.0130001
CROOKER S A,HOLLINGSWORTH J A,TRETIAK S,et al. Spectrally resolved dynamics of energy transfer in quantum-dot assemblies:towards engineered energy flows in artificial materials [J]. Phys. Rev. Lett., 2002,89(18):186802-1-4. doi: 10.1103/physrevlett.89.186802http://dx.doi.org/10.1103/physrevlett.89.186802
NOWY S,REN W,ELSCHNER A,et al. Impedance spectroscopy as a probe for the degradation of organic light-emitting diodes [J]. J. Appl. Phys., 2010,107(5):054501-1-9. doi: 10.1063/1.3294642http://dx.doi.org/10.1063/1.3294642
黄文波,彭俊彪. 高分子发光二极管载流子注入过程研究 [J]. 物理学报, 2007,56(5):2974-2978. doi: 10.7498/aps.56.2974http://dx.doi.org/10.7498/aps.56.2974
HUANG W B,PENG J B. Carrier injection process of polymer light-emitting diodes [J]. Acta Phys. Sinica, 2007,56(5):2974-2978. (in Chinese). doi: 10.7498/aps.56.2974http://dx.doi.org/10.7498/aps.56.2974
0
浏览量
328
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构