浏览全部资源
扫码关注微信
1.太原科技大学 应用科学学院, 山西 太原 030024
2.福建师范大学物理与能源学院 福建省量子调控与新能源材料重点实验室, 福建 福州 350117
3.山西医科大学 口腔医学院, 山西 太原 030001
[ "张路鹏(1996-),男,山西长治人,硕士研究生,2019年于运城学院获得学士学位,主要从事碳点的功能化及其在生物医学领域应用的研究。Email: 1054529259@qq.com" ]
[ "张清梅(1985-),女,山西临县人,博士,副教授,2014年于南京大学获得博士学位,主要从事碳点材料的制备及其在离子检测及生物医学方面应用的研究。 " ]
[ "李冰(1975-),男,山西运城人,博士,教授,主任医师,博士生导师,2014 年于解放军总医院和山西医科大学获得博士学位,主要从事新型碳纳米口腔材料研发及口腔图像识别处理的研究。 " ]
纸质出版日期:2022-07-05,
收稿日期:2022-03-07,
修回日期:2022-03-25,
扫 描 看 全 文
张路鹏,张清梅,何松杰等.碳点的功能化研究进展[J].发光学报,2022,43(07):1147-1164.
ZHANG Lu-peng,ZHANG Qing-mei,HE Song-jie,et al.Progress on Functionalization of Carbon Dots[J].Chinese Journal of Luminescence,2022,43(07):1147-1164.
张路鹏,张清梅,何松杰等.碳点的功能化研究进展[J].发光学报,2022,43(07):1147-1164. DOI: 10.37188/CJL.20220077.
ZHANG Lu-peng,ZHANG Qing-mei,HE Song-jie,et al.Progress on Functionalization of Carbon Dots[J].Chinese Journal of Luminescence,2022,43(07):1147-1164. DOI: 10.37188/CJL.20220077.
碳点(CDs)一般是指粒径小于20 nm且表面富含羟基、羧基和氨基等官能团的零维碳基纳米材料。因其具有优异的光学性质及易于功能化修饰等优点,在生物传感、生物成像、肿瘤治疗、抗菌和促成骨等领域得到了广泛的应用,并有望成为未来最有应用前景的碳基纳米材料。然而,要将CDs真正推向生物医学等实际应用领域,必须要对CDs进行功能化处理。表面钝化和杂原子掺杂是CDs功能化的两种常用方法,本文对这两种功能化方法进行了较为系统的阐述,希望为CDs的功能化设计及推向实际应用提供一些方法和研究思路上的参考。
Carbon dots(CDs) generally refer to zero-dimensional carbon-based nanomaterials with a particle size of less than 20 nm and rich in functional groups such as hydroxyl, carboxyl and amino groups on their surface. Due to its excellent optical properties and easy functional modification, it has been widely used in biosensing, biological imaging, tumor therapy, antibacterial, and osteogenesis. It is expected to become the most promising carbon-based nanomaterials in the future. However, to truly push CDs to practical applications in biomedicine field, it must be functionalized. Surface passivation and heteroatomic doping are two common methods, and these two methods for functionalization of CDs were systematically summarized in this review. We hope to provide some methods and ideas for the functional design and their practical applications of CDs.
碳点功能化表面钝化杂原子掺杂生物医学应用
carbon dotsfunctionalizationsurface passivationheteroatom dopingbiomedical applications
XU D,LIN Q L,CHANG H T. Recent advances and sensing applications of carbon dots [J]. Small Methods, 2020,4(4):1900387-1-17. doi: 10.1002/smtd.201900387http://dx.doi.org/10.1002/smtd.201900387
LIU M L,CHEN B B,LI C M,et al. Carbon dots:synthesis,formation mechanism,fluorescence origin and sensing applications [J]. Green Chem., 2019,21(3):449-471. doi: 10.1039/c8gc02736fhttp://dx.doi.org/10.1039/c8gc02736f
ZHENG M,XIE Z G,QU D,et al. On-off-on fluorescent carbon dot nanosensor for recognition of chromium(Ⅵ) and ascorbic acid based on the inner filter effect [J]. ACS Appl. Mater. Interfaces, 2013,5(24):13242-13247. doi: 10.1021/am4042355http://dx.doi.org/10.1021/am4042355
LUO P G,SAHU S,YANG S T,et al. Carbon “quantum” dots for optical bioimaging [J]. J. Mater. Chem. B, 2013,1(16):2116-2127. doi: 10.1039/c3tb00018dhttp://dx.doi.org/10.1039/c3tb00018d
SU Y,LIU S,GUAN Y Y,et al. Renal clearable hafnium-doped carbon dots for CT/fluorescence imaging of orthotopic liver cancer [J]. Biomaterials, 2020,255:120110. doi: 10.1016/j.biomaterials.2020.120110http://dx.doi.org/10.1016/j.biomaterials.2020.120110
ZHANG J X,ZHENG M,ZHANG F L,et al. Supramolecular hybrids of AIEgen with carbon dots for noninvasive long-term bioimaging [J]. Chem. Mater., 2016,28(23):8825-8833. doi: 10.1021/acs.chemmater.6b04894http://dx.doi.org/10.1021/acs.chemmater.6b04894
QU D,ZHENG M,LI J,et al. Tailoring color emissions from N-doped graphene quantum dots for bioimaging applications [J]. Light Sci. Appl., 2015,4(12):e364-1-8. doi: 10.1038/lsa.2015.137http://dx.doi.org/10.1038/lsa.2015.137
DING H,DU F Y,LIU P C,et al. DNA-carbon dots function as fluorescent vehicles for drug delivery [J]. ACS Appl. Mater. Interfaces, 2015,7(12):6889-6897. doi: 10.1021/acsami.5b00628http://dx.doi.org/10.1021/acsami.5b00628
LI J P,LI M,TIAN L F,et al. Facile strategy by hyaluronic acid functional carbon dot-doxorubicin nanoparticles for CD44 targeted drug delivery and enhanced breast cancer therapy [J]. Int. J. Pharmaceut., 2020,578:119122-1-13. doi: 10.1016/j.ijpharm.2020.119122http://dx.doi.org/10.1016/j.ijpharm.2020.119122
YU H L,LV X F,WU L L,et al. Doxorubicin-loaded fluorescent carbon dots with PEI passivation as a drug delivery system for cancer therapy [J]. Nanoscale, 2020,12(33):17222-17237. doi: 10.1039/d0nr01236jhttp://dx.doi.org/10.1039/d0nr01236j
WEN X P,ZHAO Z H,ZHAI S Q,et al. Stable nitrogen and sulfur co-doped carbon dots for selective folate sensing,in vivo imaging and drug delivery [J]. Diam. Relat. Mater., 2020,105:107791-1-11. doi: 10.1016/j.diamond.2020.107791http://dx.doi.org/10.1016/j.diamond.2020.107791
南福春,薛小矿,葛介超,等. 红光/近红外光响应碳点在肿瘤治疗中的应用进展 [J]. 发光学报, 2021,42(8):1155-1171. doi: 10.37188/CJL.20210163http://dx.doi.org/10.37188/CJL.20210163
NAN F C,XUE X K,GE J C,et al. Recent advances of red/near infrared light responsive carbon dots for tumor therapy [J]. Chin. J. Lumin., 2021,42(8):1155-1171. (in Chinese). doi: 10.37188/CJL.20210163http://dx.doi.org/10.37188/CJL.20210163
LI Y,ZHENG X H,ZHANG X Y,et al. Porphyrin-based carbon dots for photodynamic therapy of hepatoma [J]. Adv. Healthc. Mater., 2017,6(1):1600924-1-6. doi: 10.1002/adhm.201600924http://dx.doi.org/10.1002/adhm.201600924
HE H Z,ZHENG X H,LIU S,et al. Diketopyrrolopyrrole-based carbon dots for photodynamic therapy [J]. Nanoscale, 2018,10(23):10991-10998. doi: 10.1039/c8nr02643bhttp://dx.doi.org/10.1039/c8nr02643b
CHEN S,SUN T T,ZHENG M,et al. Carbon dots based nanoscale covalent organic frameworks for photodynamic therapy [J]. Adv. Funct. Mater., 2020,30(43):2004680-1-8. doi: 10.1002/adfm.202004680http://dx.doi.org/10.1002/adfm.202004680
ZHENG M,LI Y,LIU S,et al. One-pot to synthesize multifunctional carbon dots for near infrared fluorescence imaging and photothermal cancer therapy [J]. ACS Appl. Mater. Interfaces, 2016,8(36):23533-235341. doi: 10.1021/acsami.6b07453http://dx.doi.org/10.1021/acsami.6b07453
HOLA K,ZHANG Y,WANG Y,et al. Carbon dots—emerging light emitters for bioimaging,cancer therapy and optoelectronics [J]. Nano Today, 2014,9(5):590-603. doi: 10.1016/j.nantod.2014.09.004http://dx.doi.org/10.1016/j.nantod.2014.09.004
YUAN F L,WANG Y K,SHARMA G,et al. Bright high-colour-purity deep-blue carbon dot light-emitting diodes via efficient edge amination [J]. Nat. Photonics, 2020,14(3):171-176. doi: 10.1038/s41566-019-0557-5http://dx.doi.org/10.1038/s41566-019-0557-5
JIANG K,WANG Y H,CAI C Z,et al. Conversion of carbon dots from fluorescence to ultralong room-temperature phosphorescence by heating for security applications [J]. Adv. Mater., 2018,30(26):1800783-1-8. doi: 10.1002/adma.201800783http://dx.doi.org/10.1002/adma.201800783
JIANG K,WANG Y H,GAO X L,et al. Facile,quick,and gram-scale synthesis of ultralong-lifetime room-temperature-phosphorescent carbon dots by microwave irradiation [J]. Angew. Chem. Int. Ed., 2018,57(21):6216-6220. doi: 10.1002/anie.201802441http://dx.doi.org/10.1002/anie.201802441
刘俊,张熙荣,熊焕明. 荧光碳点在指纹检测中的应用 [J]. 发光学报, 2021,42(8):1095-1113. doi: 10.37188/CJL.20200334http://dx.doi.org/10.37188/CJL.20200334
LIU J,ZHANG X R,XIONG H M. Application of fluorescent carbon dots in fingerprint detection [J]. Chin. J. Lumin., 2021,42(8):1095-1113. (in Chinese). doi: 10.37188/CJL.20200334http://dx.doi.org/10.37188/CJL.20200334
YAN F Y,JIANG Y X,SUN X D,et al. Surface modification and chemical functionalization of carbon dots:a review [J]. Microchim. Acta, 2018,185(9):424-1-34. doi: 10.1007/s00604-018-2953-9http://dx.doi.org/10.1007/s00604-018-2953-9
PARK Y,YOO J,LIM B,et al. Improving the functionality of carbon nanodots:doping and surface functionalization [J]. J. Mater. Chem. A, 2016,4(30):11582-11603. doi: 10.1039/c6ta04813ghttp://dx.doi.org/10.1039/c6ta04813g
ZHOU J,ZHOU H,TANG J B,et al. Carbon dots doped with heteroatoms for fluorescent bioimaging:a review [J]. Microchim. Acta, 2017,184(2):343-368. doi: 10.1007/s00604-016-2043-9http://dx.doi.org/10.1007/s00604-016-2043-9
LIN L P,LUO Y X,TSAI P,et al. Metal ions doped carbon quantum dots:synthesis,physicochemical properties,and their applications [J]. TrAC Trends Anal. Chem., 2018,103:87-101. doi: 10.1016/j.trac.2018.03.015http://dx.doi.org/10.1016/j.trac.2018.03.015
ZHANG M Z,ZHAI X Y,SUN M Z,et al. When rare earth meets carbon nanodots:mechanisms,applications and outlook [J]. Chem. Soc. Rev., 2020,49(24):9220-9248. doi: 10.1039/d0cs00462fhttp://dx.doi.org/10.1039/d0cs00462f
MIAO S H,LIANG K,ZHU J J,et al. Hetero-atom-doped carbon dots:doping strategies,properties and applications [J]. Nano Today, 2020,33:100879-1-29. doi: 10.1016/j.nantod.2020.100879http://dx.doi.org/10.1016/j.nantod.2020.100879
ANSARI L,HALLAJ S,HALLAJ T,et al. Doped-carbon dots:recent advances in their biosensing,bioimaging and therapy applications [J]. Colloid Surf. B Biointerfaces, 2021, 203:111743-1-22. doi: 10.1016/j.colsurfb.2021.111743http://dx.doi.org/10.1016/j.colsurfb.2021.111743
LI X C,FU Y Z,ZHAO S J,et al. Metal ions-doped carbon dots:synthesis,properties,and applications [J]. Chem. Eng. J., 2022,430:133101. doi: 10.1016/j.cej.2021.133101http://dx.doi.org/10.1016/j.cej.2021.133101
JOHN V L,NAIR Y,VINOD T P. Doping and surface modification of carbon quantum dots for enhanced functionalities and related applications [J]. Part. Part. Syst. Char., 2021,38(11):2100170-1-28. doi: 10.1002/ppsc.202100170http://dx.doi.org/10.1002/ppsc.202100170
PERIKALA M,BHARDWAJ A. Engineering photo-luminescent centers of carbon dots to achieve higher quantum yields [J]. ACS Appl. Electron. Mater., 2020,2(8):2470-2478. doi: 10.1021/acsaelm.0c00411http://dx.doi.org/10.1021/acsaelm.0c00411
BAI Y T,ZHANG B,CHEN L,et al. Facile one-pot synthesis of polydopamine carbon dots for photothermal therapy [J]. Nanoscale Res. Lett., 2018,13(1):287-1-9. doi: 10.1186/s11671-018-2711-2http://dx.doi.org/10.1186/s11671-018-2711-2
GUO J Q,YE S,LI H,et al. Novel fluorescent probes based on nitrogen-sulfur co-doped carbon dots for chromium ion detection [J]. New J. Chem., 2021,45(10):4828-4834. doi: 10.1039/d0nj06178fhttp://dx.doi.org/10.1039/d0nj06178f
XU D F,FU N,XIE Y,et al. Easy formation of nitrogen-doped carbon dots towards Hg2+ fluorescent measurement and multicolor intracellular imaging [J]. Mater. Chem. Phys., 2021,266:124547. doi: 10.1016/j.matchemphys.2021.124547http://dx.doi.org/10.1016/j.matchemphys.2021.124547
FU M J,WEI N,PANG L F,et al. Red emission nitrogen and zinc co-doped carbon dots as fluorescent sensor for reversible detection of peroxynitrite in living cells [J]. Sens. Actuators B Chem., 2022,351:130939. doi: 10.1016/j.snb.2021.130939http://dx.doi.org/10.1016/j.snb.2021.130939
WANG R M,WANG R X,JU D Y,et al. “ON-OFF-ON” fluorescent probes based on nitrogen-doped carbon dots for hypochlorite and bisulfite detection in living cells [J]. Analyst, 2018,143(23):5834-5840. doi: 10.1039/c8an01585fhttp://dx.doi.org/10.1039/c8an01585f
JIANG X H,QIN D M,MO G C,et al. Ginkgo leaf-based synthesis of nitrogen-doped carbon quantum dots for highly sensitive detection of salazosulfapyridine in mouse plasma [J]. J. Pharm. Biomed. Anal., 2019,164:514-519. doi: 10.1016/j.jpba.2018.11.025http://dx.doi.org/10.1016/j.jpba.2018.11.025
TIAN B S,LIU S K,FENG L L,et al. Renal-clearable nickel-doped carbon dots with boosted photothermal conversion efficiency for multimodal imaging-guided cancer therapy in the second near-infrared biowindow [J]. Adv. Funct. Mater., 2021,31(26):2100549-1-12. doi: 10.1002/adfm.202100549http://dx.doi.org/10.1002/adfm.202100549
LI Y X,LI B,WANG X C,et al. Safe and efficient magnetic resonance imaging of acute myocardial infarction with gadolinium-doped carbon dots [J]. Nanomedicine (Lond), 2020,15(24):2385-2398. doi: 10.2217/nnm-2020-0160http://dx.doi.org/10.2217/nnm-2020-0160
WANG J M,HU X L,DING H Z,et al. Fluorine and nitrogen co-doped carbon dot complexation with Fe(Ⅲ) as a T1 contrast agent for magnetic resonance imaging [J]. ACS Appl. Mater. Interfaces, 2019,11(20):18203-18212. doi: 10.1021/acsami.9b03644http://dx.doi.org/10.1021/acsami.9b03644
PHAN L M T,GUL A R,LE T N,et al. One-pot synthesis of carbon dots with intrinsic folic acid for synergistic imaging-guided photothermal therapy of prostate cancer cells [J]. Biomater. Sci., 2019,7(12):5187-5196. doi: 10.1039/c9bm01228ahttp://dx.doi.org/10.1039/c9bm01228a
WANG J M,XU M S,WANG D,et al. Copper-doped carbon dots for optical bioimaging and photodynamic therapy [J]. Inorg. Chem., 2019,58(19):13394-13402. doi: 10.1021/acs.inorgchem.9b02283http://dx.doi.org/10.1021/acs.inorgchem.9b02283
JIANG Q J,LIU L,LI Q Y,et al. NIR-laser-triggered gadolinium-doped carbon dots for magnetic resonance imaging,drug delivery and combined photothermal chemotherapy for triple negative breast cancer [J]. J. Nanobiotechnol., 2021,19(1):64-1-15. doi: 10.1186/s12951-021-00811-whttp://dx.doi.org/10.1186/s12951-021-00811-w
MENG Y,YANG M X,LIU XC,et al. Zn2+-doped carbon dots,a good biocompatibility nanomaterial applied for bio-imaging and inducing osteoblastic differentiation in vitro [J]. Nano, 2019,14(3):1950029-1-11. doi: 10.1142/s1793292019500292http://dx.doi.org/10.1142/s1793292019500292
YANG M X,MENG Y,LIU J J,et al. Facile synthesis of Mg2+-doped carbon dots as novel biomaterial inducing cell osteoblastic differentiation [J]. Part. Part. Syst. Charact., 2019,36(1):1800315-1-6. doi: 10.1002/ppsc.201800315http://dx.doi.org/10.1002/ppsc.201800315
BU W H,XU X W,WANG Z L,et al. Ascorbic acid-PEI carbon dots with osteogenic effects as miR-2861 carriers to effectively enhance bone regeneration [J]. ACS Appl. Mater. Interfaces, 2020,12(45):50287-50302. doi: 10.1021/acsami.0c15425http://dx.doi.org/10.1021/acsami.0c15425
CHU X H,WU F,SUN B H,et al. Genipin cross-linked carbon dots for antimicrobial,bioimaging and bacterial discrimination [J]. Colloid Surf. B Biointerfaces, 2020,190:110930-1-8. doi: 10.1016/j.colsurfb.2020.110930http://dx.doi.org/10.1016/j.colsurfb.2020.110930
SARAVANAN A,MARUTHAPANDI M,DAS P,et al. Applications of N-doped carbon dots as antimicrobial agents,antibiotic carriers,and selective fluorescent probes for nitro explosives [J]. ACS Appl. Bio Mater., 2020,3(11):8023-8031. doi: 10.1021/acsabm.0c01104http://dx.doi.org/10.1021/acsabm.0c01104
BAKER S N,BAKER G A. Luminescent carbon nanodots:emergent nanolights [J]. Angew. Chem. Int. Ed., 2010,49(38):6726-6744. doi: 10.1002/anie.200906623http://dx.doi.org/10.1002/anie.200906623
HOU J,YAN J,ZHAO Q,et al. A novel one-pot route for large-scale preparation of highly photoluminescent carbon quantum dots powders [J]. Nanoscale, 2013,5(20):9558-9561. doi: 10.1039/c3nr03444ehttp://dx.doi.org/10.1039/c3nr03444e
SAHU S,BEHERA B,MAITI T K,et al. Simple one-step synthesis of highly luminescent carbon dots from orange juice:application as excellent bio-imaging agents [J]. Chem. Commun., 2012,48(70):8835-8837. doi: 10.1039/c2cc33796ghttp://dx.doi.org/10.1039/c2cc33796g
XU X Y,RAY R,GU Y L,et al. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments [J]. J. Am. Chem. Soc., 2004,126(40):12736-12737. doi: 10.1021/ja040082hhttp://dx.doi.org/10.1021/ja040082h
SUN Y P,ZHOU B,LIN Y,et al. Quantum-sized carbon dots for bright and colorful photoluminescence [J]. J. Am. Chem. Soc., 2006,128(24):7756-7757. doi: 10.1021/ja062677dhttp://dx.doi.org/10.1021/ja062677d
CHAI L J,ZHOU J,FENG H,et al. Functionalized carbon quantum dots with dopamine for tyrosinase activity monitoring and inhibitor screening:in vitro and intracellular investigation [J]. ACS Appl. Mater. Interfaces, 2015,7(42):23564-23574. doi: 10.1021/acsami.5b06711http://dx.doi.org/10.1021/acsami.5b06711
WANG R J,XU Y,ZHANG T,et al. Rapid and sensitive detection of Salmonella typhimurium using aptamer-conjugated carbon dots as fluorescence probe [J]. Anal. Methods, 2015,7(5):1701-1706. doi: 10.1039/c4ay02880ehttp://dx.doi.org/10.1039/c4ay02880e
LYNGE M E,WESTEN RVAN DER,POSTMA A,et al. Polydopamine—a nature-inspired polymer coating for biomedical science [J]. Nanoscale, 2011,3(12):4916-4928. doi: 10.1039/c1nr10969chttp://dx.doi.org/10.1039/c1nr10969c
STEEVES A J,VARIOLA F. Elucidating structure-function relationships governing the interfacial response of human mesenchymal stem cells to polydopamine coatings [J]. J. Mater. Chem. B, 2020,8(2):199-215. doi: 10.1039/c9tb02188dhttp://dx.doi.org/10.1039/c9tb02188d
PAPPALARDO J S,MACAIRAN J R,MACINA A,et al. Effects of polydopamine-passivation on the optical properties of carbon dots and its potential use in vivo [J]. Phys. Chem. Chem. Phys., 2020,22(29):16595-16605. doi: 10.1039/d0cp01938khttp://dx.doi.org/10.1039/d0cp01938k
WENG Y J,JIANG B,YANG K G,et al. Polyethyleneimine-modified graphene oxide nanocomposites for effective protein functionalization [J]. Nanoscale, 2015,7(34):14284-14291. doi: 10.1039/c5nr03370ehttp://dx.doi.org/10.1039/c5nr03370e
GUO Y,ZHANG J C,ZHANG W H,et al. Green fluorescent carbon quantum dots functionalized with polyethyleneimine,and their application to aptamer-based determination of thrombin and ATP [J]. Microchim. Acta, 2019,186(11):717-1-8. doi: 10.1007/s00604-019-3874-yhttp://dx.doi.org/10.1007/s00604-019-3874-y
KONG R M,CHEN Z,YE M,et al. Cell-SELEX-based aptamer-conjugated nanomaterials for enhanced targeting of cancer cells [J]. Sci. China Chem., 2011,54(8):1218-1226. doi: 10.1007/s11426-011-4336-5http://dx.doi.org/10.1007/s11426-011-4336-5
DHIMAN A,KALRA P,BANSAL V,et al. Aptamer-based point-of-care diagnostic platforms [J]. Sens. Actuators B Chem., 2017,246:535-553. doi: 10.1016/j.snb.2017.02.060http://dx.doi.org/10.1016/j.snb.2017.02.060
RAUF S,ZHANG L,ALI A,et al. Label-free nanopore biosensor for rapid and highly sensitive cocaine detection in complex biological fluids [J]. ACS Sens., 2017,2(2):227-234. doi: 10.1021/acssensors.6b00627http://dx.doi.org/10.1021/acssensors.6b00627
SHAHDORDIZADEH M,TAGHDISI S M,ANSARI N,et al. Aptamer based biosensors for detection of Staphylococcus aureus [J]. Sens. Actuators B Chem., 2017,241:619-635. doi: 10.1016/j.snb.2016.10.088http://dx.doi.org/10.1016/j.snb.2016.10.088
RHOUATI A,BULBUL G,LATIF U,et al. Nano-aptasensing in mycotoxin analysis:recent updates and progress [J]. Toxins, 2017,9(11):349-1-23. doi: 10.3390/toxins9110349http://dx.doi.org/10.3390/toxins9110349
KHEDRI M,RAMEZANI M,RAFATPANAH H,et al. Detection of food-born allergens with aptamer-based biosensors [J]. TrAC Trends Anal. Chem., 2018,103:126-136. doi: 10.1016/j.trac.2018.04.001http://dx.doi.org/10.1016/j.trac.2018.04.001
SABERI Z,REZAEI B,REZAEI P,et al. Design a fluorometric aptasensor based on CoOOH nanosheets and carbon dots for simultaneous detection of lysozyme and adenosine triphosphate [J]. Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 2020,233:118197-1-7. doi: 10.1016/j.saa.2020.118197http://dx.doi.org/10.1016/j.saa.2020.118197
SHOVAL A,MARKUS A,ZHOU Z X,et al. Anti-VEGF-aptamer modified C-dots—a hybrid nanocomposite for topical treatment of ocular vascular disorders [J]. Small, 2019,15(40):1902776-1-10. doi: 10.1002/smll.201902776http://dx.doi.org/10.1002/smll.201902776
ZHENG M,LIU S,LI J,et al. Integrating oxaliplatin with highly luminescent carbon dots:an unprecedented theranostic agent for personalized medicine [J]. Adv. Mater., 2014,26(21):3554-3560. doi: 10.1002/adma.201306192http://dx.doi.org/10.1002/adma.201306192
LI C H,LU B,WANG X Y,et al. A feasible and universal one-step method for functionalizing carbon dots efficiently via in-situ free radical polymerization [J]. J. Lumin., 2021,238:118246. doi: 10.1016/j.jlumin.2021.118246http://dx.doi.org/10.1016/j.jlumin.2021.118246
WANG X D,WANG D,GUO Y L,et al. Imidazole derivative-functionalized carbon dots:using as a fluorescent probe for detecting water and imaging of live cells [J]. Dalton Trans., 2015,44(12):5547-5554. doi: 10.1039/c5dt00128ehttp://dx.doi.org/10.1039/c5dt00128e
LAI I P J,HARROUN S G,CHEN S Y,et al. Solid-state synthesis of self-functional carbon quantum dots for detection of bacteria and tumor cells [J]. Sens. Actuators B Chem., 2016,228:465-470. doi: 10.1016/j.snb.2016.01.062http://dx.doi.org/10.1016/j.snb.2016.01.062
RAO H B,LIU W,LU Z W,et al. Silica-coated carbon dots conjugated to CdTe quantum dots:a ratiometric fluorescent probe for copper(Ⅱ) [J]. Microchim. Acta, 2016,183(2):581-588. doi: 10.1007/s00604-015-1682-6http://dx.doi.org/10.1007/s00604-015-1682-6
MIAO H,WANG L,ZHUO Y,et al. Label-free fluorimetric detection of CEA using carbon dots derived from tomato juice [J]. Biosens. Bioelectron., 2016,86:83-89. doi: 10.1016/j.bios.2016.06.043http://dx.doi.org/10.1016/j.bios.2016.06.043
ZHOU J R,AI R,WENG J J,et al. A “on-off-on” fluorescence aptasensor using carbon quantum dots and graphene oxide for ultrasensitive detection of the major shellfish allergen Arginine kinase [J]. Microchem. J., 2020,158:105171-1-6. doi: 10.1016/j.microc.2020.105171http://dx.doi.org/10.1016/j.microc.2020.105171
GAO P L,LIU S,SU Y,et al. Fluorine-doped carbon dots with intrinsic nucleus-targeting ability for drug and dye delivery [J]. Bioconjugate Chem., 2020,31(3):646-655. doi: 10.1021/acs.bioconjchem.9b00801http://dx.doi.org/10.1021/acs.bioconjchem.9b00801
KONG T T,ZHOU R H,ZHANG Y J,et al. AS1411 aptamer modified carbon dots via polyethylenimine-assisted strategy for efficient targeted cancer cell imaging [J]. Cell Proliferat., 2020,53(1):e12713-1-9. doi: 10.1111/cpr.12713http://dx.doi.org/10.1111/cpr.12713
ZHANG J X,ZHENG M,XIE Z G. Co-assembled hybrids of proteins and carbon dots for intracellular protein delivery [J]. J. Mater. Chem. B, 2016,4(34):5659-5663. doi: 10.1039/c6tb01622ghttp://dx.doi.org/10.1039/c6tb01622g
SUN T T,ZHENG M,XIE Z G,et al. Supramolecular hybrids of carbon dots with doxorubicin:synthesis,stability and cellular trafficking [J]. Mater. Chem. Front., 2017,1(2):354-360. doi: 10.1039/c6qm00042hhttp://dx.doi.org/10.1039/c6qm00042h
LU S,XIE Z G,ZHENG M. Phenylboronic acid modified carbon dots for improved protein delivery [J]. Chem. Eng. Sci., 2021,237:116586. doi: 10.1016/j.ces.2021.116586http://dx.doi.org/10.1016/j.ces.2021.116586
GAO P L,CHEN S,LIU S,et al. Chiral carbon dots-enzyme nanoreactors with enhanced catalytic activity for cancer therapy [J]. ACS Appl. Mater. Interfaces, 2021,13(47):56456-56464. doi: 10.1021/acsami.1c16091http://dx.doi.org/10.1021/acsami.1c16091
SU Y,LU S Y,GAO P L,et al. BODIPY@carbon dot nanocomposites for enhanced photodynamic activity [J]. Mater. Chem. Front., 2019,3(9):1747-1753. doi: 10.1039/c9qm00257jhttp://dx.doi.org/10.1039/c9qm00257j
BARMAN M K,JANA B,BHATTACHARYYA S,et al. Photophysical properties of doped carbon dots (N,P,and B) and their influence on electron/hole transfer in carbon dots-nickel(Ⅱ) phthalocyanine conjugates [J]. J. Phys. Chem. C, 2014,118(34):20034-20041. doi: 10.1021/jp507080chttp://dx.doi.org/10.1021/jp507080c
STRAUSS V,MARGRAF J T,DOLLE C,et al. Carbon nanodots:toward a comprehensive understanding of their photoluminescence [J]. J. Am. Chem. Soc., 2014,136(49):17308-17316. doi: 10.1021/ja510183chttp://dx.doi.org/10.1021/ja510183c
WANG C F,WU X,LI X P,et al. Upconversion fluorescent carbon nanodots enriched with nitrogen for light harvesting [J]. J. Mater. Chem. A, 2012,22(31):15522-15525. doi: 10.1039/c2jm30935ahttp://dx.doi.org/10.1039/c2jm30935a
WANG C J,WANG Y B,SHI H X,et al. A strong blue fluorescent nanoprobe for highly sensitive and selective detection of mercury(Ⅱ) based on sulfur doped carbon quantum dots [J]. Mater. Chem. Phys., 2019,232:145-151. doi: 10.1016/j.matchemphys.2019.04.071http://dx.doi.org/10.1016/j.matchemphys.2019.04.071
ZHOU J,SHAN X Y,MA J J,et al. Facile synthesis of P-doped carbon quantum dots with highly efficient photoluminescence [J]. RSC Adv., 2014,4(11):5465-5468. doi: 10.1039/c3ra45294hhttp://dx.doi.org/10.1039/c3ra45294h
WANG L,RUAN F P,LV T,et al. One step synthesis of Al/N co-doped carbon nanoparticles with enhanced photoluminescence [J]. J. Lumin., 2015,158:1-5. doi: 10.1016/j.jlumin.2014.09.029http://dx.doi.org/10.1016/j.jlumin.2014.09.029
JU J,CHEN W. Synthesis of highly fluorescent nitrogen-doped graphene quantum dots for sensitive,label-free detection of Fe (Ⅲ) in aqueous media [J]. Biosens. Bioelectron., 2014,58:219-225. doi: 10.1016/j.bios.2014.02.061http://dx.doi.org/10.1016/j.bios.2014.02.061
PENG H,LI Y,JIANG C L,et al. Tuning the properties of luminescent nitrogen-doped carbon dots by reaction precursors [J]. Carbon, 2016,100:386-394. doi: 10.1016/j.carbon.2016.01.029http://dx.doi.org/10.1016/j.carbon.2016.01.029
ZHANG B X,GAO H,LI X L. Synthesis and optical properties of nitrogen and sulfur co-doped graphene quantum dots [J]. New J. Chem., 2014,38(9):4615-4621. doi: 10.1039/c4nj00965ghttp://dx.doi.org/10.1039/c4nj00965g
DONG Y Q,PANG H C,YANG H B,et al. Carbon-based dots co-doped with nitrogen and sulfur for high quantum yield and excitation-independent emission [J]. Angew. Chem. Int. Ed., 2013,52(30):7800-7804. doi: 10.1002/anie.201301114http://dx.doi.org/10.1002/anie.201301114
YANG C Y,LI Y,YANG Y X,et al. Multidimensional theranostics for tumor fluorescence imaging,photoacoustic imaging and photothermal treatment based on manganese doped carbon dots [J]. J. Biomed. Nanotechnol., 2018,14(9):1590-1600. doi: 10.1166/jbn.2018.2565http://dx.doi.org/10.1166/jbn.2018.2565
CHENG J,WANG C F,ZHANG Y,et al. Zinc ion-doped carbon dots with strong yellow photoluminescence [J]. RSC Adv., 2016,6(43):37189-37194. doi: 10.1039/c5ra27808bhttp://dx.doi.org/10.1039/c5ra27808b
LI F,LIU C J,YANG J,et al. Mg/N double doping strategy to fabricate extremely high luminescent carbon dots for bioimaging [J]. RSC Adv., 2014,4(7):3201-3205. doi: 10.1039/c3ra43826khttp://dx.doi.org/10.1039/c3ra43826k
ZHENG S H,YU N N,HAN C P,et al. Preparation of gadolinium doped carbon dots for enhanced MR imaging and cell fluorescence labeling [J]. Biochem. Biophys. Res. Commu., 2019,511(2):207-213. doi: 10.1016/j.bbrc.2019.01.098http://dx.doi.org/10.1016/j.bbrc.2019.01.098
YUE L L,LI H L,SUN Q,et al. Red-emissive ruthenium-containing carbon dots for bioimaging and photodynamic cancer therapy [J]. ACS Appl. Nano Mater., 2020,3(1):869-876. doi: 10.1021/acsanm.9b02394http://dx.doi.org/10.1021/acsanm.9b02394
WU F S,SU H F,ZHU X J,et al. Near-infrared emissive lanthanide hybridized carbon quantum dots for bioimaging applications [J]. J. Mater. Chem. B, 2016,4(38):6366-6372. doi: 10.1039/c6tb01646dhttp://dx.doi.org/10.1039/c6tb01646d
BAO Y W,HUA X W,LI Y H,et al. Hyperthemia-promoted cytosolic and nuclear delivery of copper/carbon quantum dot-crosslinked nanosheets:multimodal imaging-guided photothermal cancer therapy [J]. ACS Appl. Mater. Interfaces, 2018,10(2):1544-1555. doi: 10.1021/acsami.7b15332http://dx.doi.org/10.1021/acsami.7b15332
GUO X L,DING Z Y,DENG S M,et al. A novel strategy of transition-metal doping to engineer absorption of carbon dots for near-infrared photothermal/photodynamic therapies [J]. Carbon, 2018,134:519-530. doi: 10.1016/j.carbon.2018.04.001http://dx.doi.org/10.1016/j.carbon.2018.04.001
SONG X J,GONG H,YIN S N,et al. Ultra-small iron oxide doped polypyrrole nanoparticles for in vivo multimodal imaging guided photothermal therapy [J]. Adv. Funct. Mater., 2014,24(9):1194-1201. doi: 10.1002/adfm.201302463http://dx.doi.org/10.1002/adfm.201302463
JIA Q Y,GE J C,LIU W M,et al. A magnetofluorescent carbon dot assembly as an acidic H2O2-driven oxygenerator to regulate tumor hypoxia for simultaneous bimodal imaging and enhanced photodynamic therapy [J]. Adv. Mater., 2018,30(13):1706090-1-10. doi: 10.1002/adma.201706090http://dx.doi.org/10.1002/adma.201706090
BI Q J,SONG X,HU A,et al. Magnetofection:magic magnetic nanoparticles for efficient gene delivery [J]. Chin. Chem. Lett., 2020,31(12):3041-3046. doi: 10.1016/j.cclet.2020.07.030http://dx.doi.org/10.1016/j.cclet.2020.07.030
SALMANI M M,HASHEMIAN M,YEKTA H J,et al. Synergic effects of magnetic nanoparticles on hyperthermia-based therapy and controlled drug delivery for bone substitute application [J]. J. Supercond. Nov. Magn., 2020,33(9):2809-2820. doi: 10.1007/s10948-020-05530-1http://dx.doi.org/10.1007/s10948-020-05530-1
GHAYOUR H,ABDELLAHI M,OZADA N,et al. Hyperthermia application of zinc doped nickel ferrite nanoparticles [J]. J. Phys. Chem. Solids, 2017,111:464-472. doi: 10.1016/j.jpcs.2017.08.018http://dx.doi.org/10.1016/j.jpcs.2017.08.018
LUO T Y,NIE Y,LU J,et al. Iron doped carbon dots based nanohybrids as a tetramodal imaging agent for gene delivery promotion and photothermal-chemodynamic cancer synergistic theranostics [J]. Mater. Des., 2021, 208:109878-1-12. doi: 10.1016/j.matdes.2021.109878http://dx.doi.org/10.1016/j.matdes.2021.109878
ZHOU Z,WANG Q M,WANG J Y,et al. Imaging two targets in live cells based on rational design of lanthanide organic structure appended carbon dots [J]. Carbon, 2015,93:671-680. doi: 10.1016/j.carbon.2015.05.107http://dx.doi.org/10.1016/j.carbon.2015.05.107
PEREZ R A,SEO S J,WON J E,et al. Therapeutically relevant aspects in bone repair and regeneration [J]. Mater. Today, 2015,18(10):573-589. doi: 10.1016/j.mattod.2015.06.011http://dx.doi.org/10.1016/j.mattod.2015.06.011
SAJID P A,CHETTY S S,PRANEETHA S,et al. One-pot microwave-assisted in situ reduction of Ag+ and Au3+ ions by Citrus limon extract and their carbon-dots based nanohybrids:a potential nano-bioprobe for cancer cellular imaging [J]. RSC Adv., 2016,6(105):103482-103490. doi: 10.1039/c6ra24033jhttp://dx.doi.org/10.1039/c6ra24033j
CHEN B B,LIU Z X,ZOU H Y,et al. Highly selective detection of 2,4,6-trinitrophenol by using newly developed terbium-doped blue carbon dots [J]. Analyst, 2016,141(9):2676-2681. doi: 10.1039/c5an02569ahttp://dx.doi.org/10.1039/c5an02569a
AYAZ F,ALAŞ M Ö,OĞUZ M,et al. Aluminum doped carbon nanodots as potent adjuvants on the mammalian macrophages [J]. Mol. Biol. Rep., 2019,46(2):2405-2415. doi: 10.1007/s11033-019-04701-1http://dx.doi.org/10.1007/s11033-019-04701-1
0
浏览量
400
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构