浏览全部资源
扫码关注微信
桂林理工大学 材料科学与工程学院, 广西 桂林 541004
[ "黄铮钰(1996-),女,四川眉山人,硕士研究生,2019年于桂林理工大学获得学士学位,主要从事纳米材料的研究。Email: Huangzhengyu0304@163. com" ]
[ "周立(1983-),男,湖南益阳人,博士,教授,博士生导师,2010 年于湖南大学获得博士学位,主要从事纳米材料与天然多糖的研究。Email: zhouli@glut. edu. cn" ]
纸质出版日期:2022-06-05,
收稿日期:2022-03-05,
修回日期:2022-03-25,
移动端阅览
黄铮钰,黄泽明,周立.高荧光效率硫量子点的简单制备及其在对硝基苯酚检测中的应用[J].发光学报,2022,43(06):952-960.
HUANG Zheng-yu,HUANG Ze-ming,ZHOU Li.Facile Synthesis of Highly Fluorescent Sulfur Quantum Dots for Detection of 4-Nitrophenol[J].Chinese Journal of Luminescence,2022,43(06):952-960.
黄铮钰,黄泽明,周立.高荧光效率硫量子点的简单制备及其在对硝基苯酚检测中的应用[J].发光学报,2022,43(06):952-960. DOI: 10.37188/CJL.20220073.
HUANG Zheng-yu,HUANG Ze-ming,ZHOU Li.Facile Synthesis of Highly Fluorescent Sulfur Quantum Dots for Detection of 4-Nitrophenol[J].Chinese Journal of Luminescence,2022,43(06):952-960. DOI: 10.37188/CJL.20220073.
以单质硫⁃乙二胺混合液作为前驱体,采用简单的一步溶剂热法制备了高荧光效率的硫量子点(SQDs)。制得的SQDs具有优异的水溶性,其粒径范围为1.6~3.8 nm,呈现近单分散尺寸分布。SQDs的发射峰不随激发波长的改变而变化,当激发波长为340 nm时其显示出最强的荧光,荧光量子产率可达87%。同时,该SQDs还具有良好的荧光稳定性,改变溶液的pH或室温静置1个月,其荧光强度都没有明显降低。进一步的性能研究发现,该SQDs可以作为一种高灵敏度和高选择性的荧光探针来检测对硝基苯酚(4⁃NP),这是由于4⁃NP与SQDs之间存在内滤效应,4⁃NP能够有效猝灭SQDs的荧光。当4⁃NP浓度在2~85 μmol/L 范围内时,SQDs的相对荧光强度(
I/I
0
)与4⁃NP的浓度呈现良好的线性关系,检测限达到了73.4 nmol/L。真实水样检测结果也证实该SQDs可以有效检测环境中的4⁃NP。
As a new class of metal-free fluorescent nanomaterials, sulfur quantum dots(SQDs) have attracted increasing attention because of their unique composition, excellent optical properties and low toxicity. However, the SQDs usually suffer from the drawbacks of low fluorescence quantum yield(QY) and long preparation time, which significantly limit the practical application of SQDs. In this paper, we report a simple and viable method to prepare SQDs with high QY based on the one-step solvothermal treatment of elemental sulfur-ethylenediamine(EDA) precursor at 175 ℃ for 4 h. The prepared SQDs exhibited excellent water solubility and nearly monodisperse size distribution with size in the range of 1.6-3.8 nm. Different from other reported SQDs, the obtained SQDs showed excitation-independent emission behavior. The emission peak of the SQDs did not change with the variation of excitation wavelength. The maximum emission intensity was achieved when the excitation wavelength was 340 nm. Moreover, the fluorescence QY of SQDs was determined to be as high as 87%, which is much higher than other reported SQDs. The SQDs also displayed good fluorescence stability. When the solution pH was changed in the range of 4-9 or the SQDs solution was stored at room temperature for one month, the fluorescence intensity of SQDs did not change significantly. Furthermore, the SQDs can be used as an effective fluorescent probe for highly sensitive and selective detection of 4-nitrophenol(4-NP). Owing to the presence of inner filter effect, the 4-NP can effectively quench the fluorescence of SQDs. When the concentration of 4-NP was in the range of 2-85 μmol/L, there was a good linear relationship between the relative fluorescence intensity(
I/I
0
) of SQDs and the concentration of 4-NP. The limit of detection was calculated to be as low as 73.4 nmol/L. In addition, the SQDs were also successfully employed to sense 4-NP in tap water and river water with satisfactory performance.
硫量子点荧光探针检测对硝基苯酚内滤效应
sulfur quantum dotsfluorescent probedetection4-nitrophenolinner filter effect
LI S X,CHEN D J,ZHENG F Y,et al. Water-soluble and lowly toxic sulphur quantum dots [J]. Adv. Funct. Mater., 2014,24(45):7133-7138. doi: 10.1002/adfm.201402087http://dx.doi.org/10.1002/adfm.201402087
SHEN L H,WANG H N,LIU S N,et al. Assembling of sulfur quantum dots in fission of sublimed sulfur [J]. J. Am. Chem. Soc., 2018,140(25):7878-7884. doi: 10.1021/jacs.8b02792http://dx.doi.org/10.1021/jacs.8b02792
GAO P X,WANG G,ZHOU L. Luminescent sulfur quantum dots:synthesis,properties and potential applications [J]. ChemPhotoChem, 2020,4(11):5235-5244. doi: 10.1002/cptc.202000158http://dx.doi.org/10.1002/cptc.202000158
SHI Y E,ZHANG P,YANG D Q,et al. Synthesis,photoluminescence properties and sensing applications of luminescent sulfur nanodots [J]. Chem. Commun., 2020,56(75):10982-10988. doi: 10.1039/D0CC04341Ahttp://dx.doi.org/10.1039/D0CC04341A
PAL A,ARSHAD F,SK P. Emergence of sulfur quantum dots:unfolding their synthesis,properties,and applications [J]. Adv. Colloid Interface Sci., 2020,285:102274. doi: 10.1021/acsanm.1c00509http://dx.doi.org/10.1021/acsanm.1c00509
马金珠,张淼,史玉娥,等. 发光硫纳米点的合成、光学性质与应用研究进展 [J]. 发光学报,2020,41(12):1627-1637. doi: 10.37188/CJL.20200316http://dx.doi.org/10.37188/CJL.20200316
MA J Z,ZHANG M,SHI Y E,et al. Synthesis,optical properties and applications of luminescent sulfur nanodots [J]. Chin. J. Lumin., 2020,41(12):1627-1637. (in Chinese). doi: 10.37188/CJL.20200316http://dx.doi.org/10.37188/CJL.20200316
LU C F,WANG Y,XU B Y,et al. A colorimetric and fluorescence dual-signal determination for iron (Ⅱ) and H2O2 in food based on sulfur quantum dots [J]. Food Chem., 2022,366:130613. doi: 10.1016/j.foodchem.2021.130613http://dx.doi.org/10.1016/j.foodchem.2021.130613
WANG Y M,MA H C,LIU J J,et al. Superior ultra-thin nanoporous g-C3N4 photocatalyst embedded with S quantum dots:a non-metal Z-scheme visible-light composite [J]. J. Mater. Sci., 2022,57(1):274-284. doi: 10.1007/s10853-021-06624-4http://dx.doi.org/10.1007/s10853-021-06624-4
WANG H G,WANG Z G,XIONG Y,et al. Hydrogen peroxide assisted synthesis of highly luminescent sulfur quantum dots [J]. Angew. Chem. Int. Ed., 2019,131(21):7114-7118. doi: 10.1002/ange.201902344http://dx.doi.org/10.1002/ange.201902344
SONG Y H,TAN J S,WANG G,et al. Oxygen accelerated scalable synthesis of highly fluorescent sulfur quantum dots [J]. Chem. Sci., 2020,11(3):772-777. doi: 10.1039/c9sc05019ahttp://dx.doi.org/10.1039/c9sc05019a
DUAN Y X,TAN J S,HUANG Z M,et al. Facile synthesis of carboxymethyl cellulose sulfur quantum dots for live cell imaging and sensitive detection of Cr (Ⅵ) and ascorbic acid [J]. Carbohydr. Polym., 2020,249:116882-1-9. doi: 10.1016/j.carbpol.2020.116882http://dx.doi.org/10.1016/j.carbpol.2020.116882
HUANG Z M,LEI J H,RUAN H,et al. One-pot synthesis of hydroxypropyl-β-cyclodextrin capped fluorescent sulfur quantum dots for highly sensitive and selective recognition of tartrazine [J]. Microchem. J., 2021,164:106031. doi: 10.1016/j.microc.2021.106031http://dx.doi.org/10.1016/j.microc.2021.106031
ZHANG C C,ZHANG P,JI X J,et al. Ultrasonication-promoted synthesis of luminescent sulfur nano-dots for cellular imaging applications [J]. Chem. Commun., 2019,55(86):13004-13007. doi: 10.1039/c9cc06586ehttp://dx.doi.org/10.1039/c9cc06586e
HU Z,DAI H Q,WEI X,et al. 49.25% efficient cyan emissive sulfur dots via a microwave-assisted route [J]. RSC Adv.,2020,10(29):17266-17269. doi: 10.1039/d0ra02778bhttp://dx.doi.org/10.1039/d0ra02778b
XIAO L,DU Q C,HUANG Y,et al. Rapid synthesis of sulfur nanodots by one-step hydrothermal reaction for luminescence-based applications [J]. ACS Appl. Nano Mater., 2019,2(10):6622-6628. doi: 10.1021/acsanm.9b01507http://dx.doi.org/10.1021/acsanm.9b01507
QIN K H,ZHANG D F,DING Y F,et al. Applications of hydrothermal synthesis of Escherichia coli derived carbon dots in in vitro and in vivo imaging and p-nitrophenol detection [J]. Analyst, 2020,145(1):177-183. doi: 10.1039/c9an01753dhttp://dx.doi.org/10.1039/c9an01753d
HU Y P,GAO Z J. Sewage sludge in microwave oven:a sustainable synthetic approach toward carbon dots for fluorescent sensing of para-nitrophenol [J]. J. Hazard. Mater., 2020,382:121048-1-7. doi: 10.1016/j.jhazmat.2019.121048http://dx.doi.org/10.1016/j.jhazmat.2019.121048
RANA A,KAWDE A N,IBRAHIM M. Simple and sensitive detection of 4-nitrophenol in real water samples using gold nanoparticles modified pretreated graphite pencil electrode [J]. J. Electroanal. Chem., 2018,820:24-31. doi: 10.1016/j.jelechem.2018.04.055http://dx.doi.org/10.1016/j.jelechem.2018.04.055
DU F Y,FUNG Y S. Dual-opposite multi-walled carbon nanotube modified carbon fiber microelectrode for microfluidic chip-capillary electrophoresis determination of methyl parathion metabolites in human urine [J]. Electrophoresis, 2018,39(11):1375-1381. doi: 10.1002/elps.201700470http://dx.doi.org/10.1002/elps.201700470
ZHANG C,GOVINDARAJU S,GIRIBABU K,et al. AgNWs-PANI nanocomposite based electrochemical sensor for detection of 4-nitrophenol [J]. Sens. Actuators B Chem., 2017,252:616-623. doi: 10.1016/j.snb.2017.06.039http://dx.doi.org/10.1016/j.snb.2017.06.039
NIAZI A,YAZDANIPOUR A. Spectrophotometric simultaneous determination of nitrophenol isomers by orthogonal signal correction and partial least squares [J]. J. Hazard. Mater., 2007,146(1-2):421-427. doi: 10.1016/j.jhazmat.2007.03.063http://dx.doi.org/10.1016/j.jhazmat.2007.03.063
FU J L,ZHOU S,ZHAO P F,et al. A dual-response ratiometric fluorescence imprinted sensor based on metal-organic frameworks for ultrasensitive visual detection of 4-nitrophenol in environments [J]. Biosens. Bioelectron., 2022,198:113848. doi: 10.1016/j.bios.2021.113848http://dx.doi.org/10.1016/j.bios.2021.113848
YANG H X,JI Z G,ZENG Y B,et al. Aggregation-induced emission monomer-based fluorescent molecularly imprinted poly (ionic liquid) synthesized by a one-pot method for sensitively detecting 4-nitrophenol [J]. Anal. Methods, 2022,14(10):1023-1030. doi: 10.1039/d1ay02132jhttp://dx.doi.org/10.1039/d1ay02132j
ZHANG Q,MEI H,ZHOU W T,et al. Cerium ion(Ⅲ)-triggered aggregation-induced emission of copper nanoclusters for trace-level p-nitrophenol detection in water [J]. Microchem. J., 2021,162:105842. doi: 10.1016/j.microc.2020.105842http://dx.doi.org/10.1016/j.microc.2020.105842
SHENG Y L,HUANG Z N,ZHONG Q,et al. Size-focusing results in highly photoluminescent sulfur quantum dots with a stable emission wavelength [J]. Nanoscale, 2021,13(4):2519-2526. doi: 10.1039/d0nr07251fhttp://dx.doi.org/10.1039/d0nr07251f
GENG S,LIN S M,Liu S G,et al. A new fluorescent sensor for detecting p-nitrophenol based on β-cyclodextrin-capped ZnO quantum dots [J]. RSC Adv., 2016,6(89):86061-86067. doi: 10.1039/c6ra17378khttp://dx.doi.org/10.1039/c6ra17378k
LI W,ZHANG H R,CHEN S,et al. Synthesis of molecularly imprinted carbon dot grafted YVO4∶Eu3+ for the ratiometric fluorescent determination of paranitrophenol [J]. Biosens. Bioelectron., 2016,86:706-713. doi: 10.1016/j.bios.2016.07.034http://dx.doi.org/10.1016/j.bios.2016.07.034
YUAN H,YU J,FENG S L,et al. Highly photoluminescent pH-independent nitrogen-doped carbon dots for sensitive and selective sensing of p-nitrophenol [J]. RSC Adv., 2016,6(18):15192-15200. doi: 10.1039/c5ra26870bhttp://dx.doi.org/10.1039/c5ra26870b
0
浏览量
365
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构