浏览全部资源
扫码关注微信
重庆邮电大学 理学院,重庆 400065
[ "相国涛(1988-),男,黑龙江佳木斯人,博士,副教授,2016年于中国科学院大学获得博士学位,主要从事稀土上转换发光材料的研究。E-mail: xianggt@cqupt.edu.cn" ]
纸质出版日期:2022-05,
收稿日期:2022-02-27,
修回日期:2022-03-15,
移动端阅览
相国涛, 杨梦琳, 刘臻, 等. NaScF4∶Yb3+/Er3+纳米颗粒荧光温敏特性[J]. 发光学报, 2022,43(5):684-690.
GUO-TAO XIANG, MENG-LIN YANG, ZHEN LIU, et al. Temperature Sensing Properties in NaScF4∶Yb3+/Er3+ Nanoparticles. [J]. Chinese journal of luminescence, 2022, 43(5): 684-690.
相国涛, 杨梦琳, 刘臻, 等. NaScF4∶Yb3+/Er3+纳米颗粒荧光温敏特性[J]. 发光学报, 2022,43(5):684-690. DOI: 10.37188/CJL.20220064.
GUO-TAO XIANG, MENG-LIN YANG, ZHEN LIU, et al. Temperature Sensing Properties in NaScF4∶Yb3+/Er3+ Nanoparticles. [J]. Chinese journal of luminescence, 2022, 43(5): 684-690. DOI: 10.37188/CJL.20220064.
利用共沉淀法制备了六角相NaScF
4
∶20%Yb
3+
/2%Er
3+
纳米颗粒,该纳米颗粒的尺寸约为35 nm且具有较好的分散性。在980 nm激发下,该纳米颗粒可以产生较强的上转换红光发射及较弱的上转换绿光发射,红绿比约为6。与此同时,在纳米颗粒中,Er
3+
热耦合的绿光能级
2
H
11/2
与
4
S
3/2
具有较好的温度感测特性,利用其荧光强度比可实现较为准确的光学温度测量,最大相对灵敏度约为1.17%·K
-1
。另外,在近红外区,非热耦合的Yb
3+
:
2
F
5/2
→
2
F
7/2
跃迁与Er
3+
:
4
I
13/2
→
4
I
15/2
跃迁的荧光强度比也表现出较好的光学测温性能,其相对灵敏度随着温度升高而逐渐增大,并在333 K时达到最大值0.73%·K
-1
。以上结果表明,NaScF
4
∶20%Yb
3+
/2%Er
3+
纳米颗粒是一种高效的上转换红光材料,且在可见区及近红外区均具有较好的光学测温表现。
In this paper
NaScF
4
∶20%Yb
3+
/2%Er
3+
nanoparticles(NPs) with a size of about 35 nm are prepared by a solvothermal process. Under the excitation of 980 nm wavelength
the NPs exhibit strong red upconversion(UC) emission and weak green UC emission. The corresponding intensity ratio of red emission to green emission is approximately 6. Meanwhile
the green and near-infrared(NIR) emission of the UCNPs own excellent temperature sensing performances within the studied temperature range
which can be used for optical thermometry based on fluorescence intensity ratio(FIR) technology. The maximums of relative sensitivity
S
R
for thermally coupled
2
H
11/2
level and
4
S
3/2
level of Er
3+
and non-thermally coupled Yb
3+ 2
F
5/2
level and Er
3+ 4
I
13/2
level are 1.17%·K
-1
and 0.73%·K
-1
respectively. The results show that the UCNPs are a kind of high efficient red UC material and show promising temperature sensing performances in visible and NIR region.
稀土离子纳米颗粒上转换发光光学测温NaScF4
rare earthnano particlesupconversionoptical thermometryNaScF4
GAO Y, CHENG Y, HU T, et al. Broadening the valid temperature range of optical thermometry through dual-mode design[J]. J. Mater. Chem. C, 2018, 6(41): 11178-11183.
LIANG S S, LI G G, DANG P P, et al. Cation substitution induced adjustment on lattice structure and photoluminescence properties of Mg14Ge5O24∶Mn4+:optimized emission for w-LED and thermometry applications[J]. Adv. Opt. Mater., 2019, 7(12): 1900093-1-15.
SHANG Y F, HAN Q, HAO S W, et al. Dual-mode upconversion nanoprobe enables broad-range thermometry from cryogenic to room temperature[J]. ACS Appl. Mater. Interfaces, 2019, 11(45): 42455-42461.
TREJGIS K, BEDNARKIEWICZ A, MARCINIAK L. Engineering excited state absorption based nanothermometry for temperature sensing and imaging[J]. Nanoscale, 2020, 12(7): 4667-4675.
ZHANG H, ZHAO S L, WANG X L, et al. The enhanced photoluminescence and temperature sensing performance in rare earth doped SrMoO4 phosphors by aliovalent doping:from material design to device applications[J]. J. Mater. Chem. C, 2019, 7(47): 15007-15013.
XU L F, LIU J Q, PEI L, et al. Enhanced up-conversion luminescence and optical temperature sensing in graphitic C3N4 quantum dots grafted with BaWO4∶Yb3+, Er3+ phosphors[J]. J. Mater. Chem. C, 2019, 7(20): 6112-6119.
KACZMAREK A M, KACZMAREK M K, VAN DEUN R. Er3+-to-Yb3+ and Pr3+-to-Yb3+ energy transfer for highly efficient near-infrared cryogenic optical temperature sensing[J]. Nanoscale, 2019, 11(3): 833-837.
WANG S X, MA S W, ZHANG G G, et al. High-performance Pr3+-doped scandate optical thermometry:200 K of sensing range with relative temperature sensitivity above 2%·K-1[J]. ACS Appl. Mater. Interfaces, 2019, 11(45): 42330-42338.
TU Y Y ZHAO S L, HE D Y, et al. A portable all-fiber thermometer based on the fluorescence intensity ratio(FIR) technique in rare earth doped TeO2-WO3-La2O3-Na2O glass[J]. J. Mater. Chem. C, 2018, 6(26): 7063-7069.
ZAREBA J K, NYK M, JANCZAK J, et al. Three-photon absorption of coordination polymer transforms UV-to-VIS thermometry into NIR-to-VIS thermometry[J]. ACS Appl. Mater. Interfaces, 2019, 11(11): 10435-10441.
WU Y F, SUO H, HE D, et al. Highly sensitive up-conversion optical thermometry based on Yb3+-Er3+ codoped NaLa-(MoO4)2 green phosphors[J]. Mater. Res. Bull., 2018, 106: 14-18.
SUO H, ZHAO X Q, ZHANG Z Y, et al. Upconverting LuVO4∶Nd3+/Yb3+/Er3+@SiO2@Cu2S hollow nanoplatforms for self-monitored photothermal ablation[J]. ACS Appl. Mater. Interfaces, 2018, 10(46): 39912-39920.
MENG Q Y, LIU T, DAI J Q, et al. Study on optical temperature sensing properties of YVO4∶Er3+, Yb3+ nanocrystals[J]. J. Lumin., 2016, 179: 633-638.
YUAN N, LIU D Y, YU X C, et al. A biological nano-thermometer based on ratiometric luminescent Er3+/Yb3+-codoped NaGd(WO4)2 nanocrystals[J]. Mater. Lett., 2018, 218: 337-340.
蒙铭周, 张瑞, 法信蒙, 等. Ce3+掺杂对NaYF4∶Yb3+,Tm3+纳米粒子上转换发光性能的影响及其荧光温度特性应用[J]. 发光学报, 2021, 42(11): 1763-1773.
MENG M Z, ZHANG R, FA X M, et al. Effect of Ce3+ doping on upconversion luminescence of NaYF4∶Yb3+, Tm3+ nanoparticles and application of fluorescence temperature characteristics[J]. Chin. J. Lumin., 2021, 42(11): 1763-1773. (in Chinese)
金叶, 李坤, 罗旭, 等. Sc2(WO4)3∶Er3+/Yb3+的上转换发光及其温度传感特性[J]. 发光学报, 2021, 42(1): 91-97.
JIN Y, LI K, LUO X, et al. Upconversion luminescence and temperature sensing properties for Sc2(WO4)3∶Er3+/Yb3+[J]. Chin. J. Lumin., 2021, 42(1): 91-97. (in Chinese)
赵皎印, 索浩, 李磊朋, 等. 荧光热增强型稀土掺杂上转换发光材料研究进展[J]. 发光学报, 2021, 42(11): 1673-1685.
ZHAO J Y, SUO H, LI L P, et al. Recent advances in rare-earth doped upconverison materials with thermally-enhanced emissions[J]. Chin. J. Lumin., 2021, 42(11): 1673-1685. (in Chinese)
相国涛, 刘小桐, 夏清, 等. β-NaYF4∶Yb3+/Er3+@β-NaYF4∶Yb3+的上转换发光特性[J]. 发光学报, 2020, 41(6): 679-683.
XIANG G T, LIU X T, XIA Q, et al. Upconversion luminescence properties of β-NaYF4∶Yb3+/Er3+@β-NaYF4∶Yb3+[J]. Chin. J. Lumin., 2020, 41(6): 679-683. (in Chinese)
BARRETO J A, O’MALLEY W, KUBEIL M, et al. Nanomaterials:applications in cancer imaging and therapy[J]. Adv. Mater., 2011, 23(12): H18-H40.
JOHNSON N J J, KORINEK A, DONG C H, et al. Self-focusing by ostwald ripening:a strategy for layer-by-layer epitaxial growth on upconverting nanocrystals[J]. J. Am. Chem. Soc., 2012, 134(27): 11068-11071.
LI Z Q, ZHANG Y, JIANG S. Multicolor core/shell-structured upconversion fluorescent nanoparticles[J]. Adv. Mater., 2008, 20(24): 4765-4769.
HUO L L, ZHOU J J, WU R Z, et al. Dual-functional β-NaYF4∶Yb3+, Er3+ nanoparticles for bioimaging and temperature sensing[J]. Opt. Mater. Express, 2016, 6(4): 1056-1064.
0
浏览量
273
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构