浏览全部资源
扫码关注微信
1.上海大学 材料科学与工程学院, 上海 200444
2.上海大学 新型显示技术及应用集成教育部重点实验室, 上海 200072
[ "李祥(1996-),男,安徽安庆人,硕士研究生,2019年于安徽理工大学获得学士学位,主要从事硅基微显示器件阳极表面处理方面的研究。Email: 2575154029@shu. edu. cn" ]
[ "张建华(1972-),女,湖北恩施人,博士,教授,1999 年于上海大学获得博士学位,主要从事半导体机电、微制造与微系统集成技术等方面的研究。Email: jhzhang@oa.shu.edu.cn" ]
纸质出版日期:2022-06-05,
收稿日期:2022-02-14,
修回日期:2022-03-06,
移动端阅览
李祥,刘海,魏斌等.不同功率O2或N2等离子处理TiNx阳极表面对硅基OLED发光性能的影响[J].发光学报,2022,43(06):934-943.
LI Xiang,LIU Hai,WEI Bin,et al.Influence of Different O2 or N2 Plasma Powers to TiNx Anode Surface on OLEDs-on Silicon Performance[J].Chinese Journal of Luminescence,2022,43(06):934-943.
李祥,刘海,魏斌等.不同功率O2或N2等离子处理TiNx阳极表面对硅基OLED发光性能的影响[J].发光学报,2022,43(06):934-943. DOI: 10.37188/CJL.20220046.
LI Xiang,LIU Hai,WEI Bin,et al.Influence of Different O2 or N2 Plasma Powers to TiNx Anode Surface on OLEDs-on Silicon Performance[J].Chinese Journal of Luminescence,2022,43(06):934-943. DOI: 10.37188/CJL.20220046.
硅基有机发光二极管是微显示领域的一个重要研究方向。本文以硅基微显示器件中阳极与有机层关键界面材料氮化钛为研究对象,通过研究不同条件的等离子处理引起的表面微结构形貌、功函数、载流子浓度、载流子迁移率、反射率以及X射线光电子能谱变化,探究有机发光性能的表面处理方法。结果显示,合适功率的等离子处理(O
2
:60 W或N
2
:80 W)能够显著提升硅基显示器件的发光亮度(O
2
:70%,N
2
:128%);同时,电流效率和功率效率分别提高了35%和58%。通过比较各个参数,等离子处理改变的Ti和 N元素的价态被认为可提高界面载流子浓度和迁移率从而优化发光性能。该研究细化了一种新颖的硅基显示器件性能提升方法,为相关研究提供了方向。
Organic light emitting diode on silicon is an important research topic in the microdisplay field. In the paper, we present a systematic study about the influence of plasma treatment to the titanium nitride, which is the key interface between the anode and organic layers. The changes of characteristic parameters, including the morphology of surface microstructure, work function, carrier concentration, carrier mobility, reflectance, and the X-ray photoelectron spectroscopy after plasma treatments, are summarized to optimize the performance of integrated organic light emitting diodes. The results show that the plasma treatment with appropriate power(60 W for O
2
or 80 W for N
2
) can significantly improve the luminance(70% for O
2
and 128% for N
2
) of display device on silicon. Meanwhile, the current and power efficiency are increased by 35% and 58%, respectively. It was revealed that the valence states of Ti and N are changed during the plasma treatment, which are considered to improve the interfacial carrier concentration and mobility for an enhanced luminescence performance. This study elaborates an approach to improve the performance of a typical microdisplay device on silicon and provides a guide for related researches.
等离子处理硅基OLED氮化钛载流子浓度及迁移率
plasma treatmentorganic light emitting diode(OLED)-on silicontitanium nitridecarrier concentration and mobility
LEE H,CHO H,BYUN C W,et al. Device characteristics of top-emitting organic light-emitting diodes depending on anode materials for CMOS-based OLED microdisplays [J]. IEEE Photon. J., 2018,10(6):8201809-1-9. doi: 10.1109/jphot.2018.2877196http://dx.doi.org/10.1109/jphot.2018.2877196
XUE Q,XIE G H. Easily reproducible top-emitting organic light-emitting devices for microdisplays adapted to aluminum contact from the standard CMOS processes [J]. J. Inf. Disp., 2020,21(3):131-137. doi: 10.1080/15980316.2020.1773551http://dx.doi.org/10.1080/15980316.2020.1773551
JI Y,RAN F,XU H G,et al. Improved performance and low cost OLED microdisplay with titanium nitride anode [J]. Org. Electron., 2014,15(11):3137-3143. doi: 10.1016/j.orgel.2014.09.001http://dx.doi.org/10.1016/j.orgel.2014.09.001
KANG C M,LEE H. Recent progress of organic light-emitting diode microdisplays for augmented reality/virtual reality applications [J]. J. Inf. Dis., 2022,23(1):19-32. doi: 10.1080/15980316.2021.1917461http://dx.doi.org/10.1080/15980316.2021.1917461
PATSALAS P,KALFAGIANNIS N,KASSAVETIS S. Optical properties and plasmonic performance of titanium nitride [J]. Materials, 2015,8(6):3128-3154. doi: 10.3390/ma8063128http://dx.doi.org/10.3390/ma8063128
ADAMOVICH V,SHOUSTIKOV A,THOMPSON M E. TiN as an anode material for organic light-emitting diodes [J]. Adv. Mater.,1999,11(9):727-730. doi: 10.1002/(sici)1521-4095(199906)11:9<727::aid-adma727>3.0.co;2-5http://dx.doi.org/10.1002/(sici)1521-4095(199906)11:9<727::aid-adma727>3.0.co;2-5
ŢĂLU Ş,STACH S,VALEDBAGI S,et al. Multifractal characteristics of titanium nitride thin films [J]. Mater. Sci.-Pol., 2015,33(3):541-548. doi: 10.1515/msp-2015-0086http://dx.doi.org/10.1515/msp-2015-0086
ZHANG S D,YAN F Y,YANG Y,et al. Effects of sputtering gas on microstructure and tribological properties of titanium nitride films [J]. Appl. Surf. Sci., 2019,488:61-69. doi: 10.1016/j.apsusc.2019.05.148http://dx.doi.org/10.1016/j.apsusc.2019.05.148
WHITE N,CAMPBELL A L,GRANT J T,et al. Surface/interface analysis and optical properties of RF sputter-deposited nanocrystalline titanium nitride thin films [J]. Appl. Surf. Sci., 2014,292:74-85. doi: 10.1016/j.apsusc.2013.11.078http://dx.doi.org/10.1016/j.apsusc.2013.11.078
DUAN L F,WANG G H,DUAN Y,et al. Design simulation and preparation of white OLED microdisplay based on microcavity structure optimization [J]. J. Spectrosc., 2021, 2021:5529644-1-8. doi: 10.1155/2021/5529644http://dx.doi.org/10.1155/2021/5529644
PARK C Y,CHOI B. Enhanced hole injection characteristics of a top emission organic light-emitting diode with pure aluminum anode [J]. Nanomaterials, 2021,11(11):2869-1-6. doi: 10.3390/nano11112869http://dx.doi.org/10.3390/nano11112869
IKEDA S,PALLEAU J,TORRES J,et al. Film texture evolution in plasma treated TiN thin films [J]. J. Appl. Phys.,1999,86(4):2300-2306. doi: 10.1063/1.371045http://dx.doi.org/10.1063/1.371045
JIMÉNEZ C,PERRIÈRE J,PALACIO C,et al. Transformation of titanium nitride in oxygen plasma [J]. Thin Solid Films,1993,228(1-2):247-251. doi: 10.1016/0040-6090(93)90609-shttp://dx.doi.org/10.1016/0040-6090(93)90609-s
MORADI V,JUN M B G,BLACKBURN A,et al. Significant improvement in visible light photocatalytic activity of Fe doped TiO2 using an acid treatment process [J]. Appl. Surf. Sci., 2018,427:791-799. doi: 10.1016/j.apsusc.2017.09.017http://dx.doi.org/10.1016/j.apsusc.2017.09.017
ZHENG X M,ZHANG X A,WEI Y H,et al. Enormous enhancement in electrical performance of few-layered MoTe2 due to Schottky barrier reduction induced by ultraviolet ozone treatment [J]. Nano Res., 2020,13(4):952-958. doi: 10.1007/s12274-020-2724-xhttp://dx.doi.org/10.1007/s12274-020-2724-x
TAMPO H,KIM S,NAGAI T,et al. Improving the open circuit voltage through surface oxygen plasma treatment and 11.7% efficient Cu2ZnSnSe4 solar cell [J]. ACS Appl. Mater. Interfaces, 2019,11(14):13319-13325. doi: 10.1021/acsami.9b01756http://dx.doi.org/10.1021/acsami.9b01756
MAENG M,KIM J H,HONG J A,et al. Effects of oxygen plasma treatments on the work function of indium tin oxide studied by in- situ photoelectron spectroscopy [J]. J. Korean Phys. Soc., 2016,68(5):692-696. doi: 10.3938/jkps.68.692http://dx.doi.org/10.3938/jkps.68.692
CHO M H,KANG Y S,KIM H Y,et al. Effect of nitrogen plasma treatment on the characteristics of AlN thin films [J]. J. Electrochem. Soc., 2000,147(9):3535-3540. doi: 10.1149/1.1393933http://dx.doi.org/10.1149/1.1393933
THILAWALA K G N,KIM J K,LEE J M. Improvement of conductivity of graphene-silver nanowire hybrid through nitrogen doping using low power plasma treatment [J]. J. Alloys Compd., 2019,773:1009-1017. doi: 10.1016/j.jallcom.2018.09.272http://dx.doi.org/10.1016/j.jallcom.2018.09.272
YAHYA M,FADAVIESLAM M R. The effects of argon plasma treatment on ITO properties and the performance of OLED devices [J]. J. Opt. Mater., 2021,120:111400-1-7. doi: 10.1016/j.optmat.2021.111400http://dx.doi.org/10.1016/j.optmat.2021.111400
OU E C W,HU L B,RAYMOND G C R,et al. Surface-modified nanotube anodes for high performance organic light-emitting diode [J]. ACS Nano, 2009,3(8):2258-2264. doi: 10.1021/nn900406nhttp://dx.doi.org/10.1021/nn900406n
ENRIQUEZ-FLORES C I,CRUZ-VALERIANO E,GUTIERREZ-PERALTA A,et al. Relation between work function,microstructural and mechanical properties of TiN-films [J]. Surf. Eng., 2018,34(9):660-666. doi: 10.1080/02670844.2017.1385233http://dx.doi.org/10.1080/02670844.2017.1385233
LU D,WU Y,GUO J H,et al. Surface treatment of indium tin oxide by oxygen-plasma for organic light-emitting diodes [J]. Mater. Sci. Eng.:B, 2003,97(2):141-144. doi: 10.1016/s0921-5107(02)00435-xhttp://dx.doi.org/10.1016/s0921-5107(02)00435-x
PARK S M,EBIHARA K,IKEGAMI T,et al. Enhanced performance of the OLED with plasma treated ITO and plasma polymerized thiophene buffer layer [J]. Curr. Appl. Phys., 2007,7(5):474-479. doi: 10.1016/j.cap.2006.10.013http://dx.doi.org/10.1016/j.cap.2006.10.013
ZHAO G L,ZHANG T B,ZHANG T,et al. Electrical and optical properties of titanium nitride coatings prepared by atmospheric pressure chemical vapor deposition [J]. J. Non-Cryst. Solids, 2008,354(12-13):1272-1275. doi: 10.1016/j.jnoncrysol.2006.11.036http://dx.doi.org/10.1016/j.jnoncrysol.2006.11.036
MOVLA H. Influence of the charge carrier mobility on the dynamic behavior and performance of the single-layer OLED [J]. Optik, 2015,126(24):5237-5240. doi: 10.1016/j.ijleo.2015.09.123http://dx.doi.org/10.1016/j.ijleo.2015.09.123
SCOTT J C,BROCK P J,SALEM J R,et al. Charge transport processes in organic light-emitting devices [J]. Synth. Met., 2000,111-112:289-293. doi: 10.1016/s0379-6779(99)00449-xhttp://dx.doi.org/10.1016/s0379-6779(99)00449-x
HUANG Z H,ZENG X T,SUN X Y,et al. Influence of plasma treatment of ITO surface on the growth and properties of hole transport layer and the device performance of OLEDs [J]. Org. Electron., 2008,9(1):51-62. doi: 10.1016/j.orgel.2007.08.002http://dx.doi.org/10.1016/j.orgel.2007.08.002
KIM S H,BAE T S,HEO W,et al. Effects of gold-nanoparticle surface and vertical coverage by conducting polymer between indium tin oxide and the hole transport layer on organic light-emitting diodes [J]. ACS Appl. Mater. Interfaces, 2015,7(27):15031-15041. doi: 10.1021/acsami.5b04248http://dx.doi.org/10.1021/acsami.5b04248
GUITTET M J,CROCOMBETTE J P,GAUTIER-SOYER M. Bonding and XPS chemical shifts in ZrSiO4 versus SiO2 and ZrO2:charge transfer and electrostatic effects [J]. Phys. Rev. B, 2001,63(12):125117-1-7. doi: 10.1103/physrevb.63.125117http://dx.doi.org/10.1103/physrevb.63.125117
OKTAY S,KAHRAMAN Z,URGEN M,et al. XPS investigations of tribolayers formed on TiN and (Ti,Re)N coatings [J]. Appl. Surf. Sci., 2015,328:255-261. doi: 10.1016/j.apsusc.2014.12.023http://dx.doi.org/10.1016/j.apsusc.2014.12.023
VASU K,KRISHNA M G,PADMANABHAN K A. Substrate-temperature dependent structure and composition variations in RF magnetron sputtered titanium nitride thin films [J]. Appl. Surf. Sci., 2011,257(7):3069-3074. doi: 10.1016/j.apsusc.2010.10.118http://dx.doi.org/10.1016/j.apsusc.2010.10.118
MILOŠV I,STREHBLOW H H,NAVINŠEK B,et al. Electrochemical and thermal oxidation of TiN coatings studied by XPS [J]. Surf. Interface Anal.,1995,23(7-8):529-539. doi: 10.1002/sia.740230713http://dx.doi.org/10.1002/sia.740230713
LU L L,LUO F,HUANG Z B,et al. Influence of the nitrogen flow rate on the infrared emissivity of TiNx films [J]. Infrared Phys. Technol., 2018,88:144-148. doi: 10.1016/j.infrared.2017.11.015http://dx.doi.org/10.1016/j.infrared.2017.11.015
JEYACHANDRAN Y L,NARAYANDASS S K,MANGALARAJ D,et al. Properties of titanium nitride films prepared by direct current magnetron sputtering [J]. Mater. Sci. Eng.:A, 2007,445-446:223-236. doi: 10.1016/j.msea.2006.09.021http://dx.doi.org/10.1016/j.msea.2006.09.021
JIANG N,ZHANG H J,BAO S N,et al. XPS study for reactively sputtered titanium nitride thin films deposited under different substrate bias [J]. Phys. B:Condens. Matter, 2004,352(1-4):118-126. doi: 10.1016/j.physb.2004.07.001http://dx.doi.org/10.1016/j.physb.2004.07.001
LEE J J,LI P C,KUNG H T,et al. Highly efficient top-emission organic light-emitting diode on an oxidized aluminum anode [J]. J. Appl. Phys., 2019,125(14):145501-1-7. doi: 10.1063/1.5092979http://dx.doi.org/10.1063/1.5092979
CI Z H,TANG D D,LI C,et al. Fabrication of highly efficient blue top-emission organic light-emitting diodes on different reflective electrodes [J]. Org. Electron., 2021,95:106197-1-6. doi: 10.1016/j.orgel.2021.106197http://dx.doi.org/10.1016/j.orgel.2021.106197
LU L L,LUO F,HUANG Z B,et al. Research on optical reflectance and infrared emissivity of TiNx films depending on sputtering pressure [J]. Infrared Phys. Technol., 2018,91:63-67. doi: 10.1016/j.infrared.2018.03.026http://dx.doi.org/10.1016/j.infrared.2018.03.026
DUAN G F,ZHAO G L,WU L,et al. Structure,electrical and optical properties of TiNx films by atmospheric pressure chemical vapor deposition [J]. Appl. Surf. Sci., 2011,257(7):2428-2431. doi: 10.1016/j.apsusc.2010.11.180http://dx.doi.org/10.1016/j.apsusc.2010.11.180
CHANG C C,NOGAN J,YANG Z P,et al. Highly plasmonic titanium nitride by room-temperature sputtering [J]. Sci. Rep., 2019,9(1):15287-1-9. doi: 10.1038/s41598-019-51236-3http://dx.doi.org/10.1038/s41598-019-51236-3
张阳,吕军锋,杨建兵,等. TiN薄膜制备方法、性能及其在OLED方面应用的研究 [J]. 光电子技术, 2018,38(3):190-194.
ZHANG Y,LV J F,YANG J B,et al. Effect of TiN thin film process on organic light emitting diodes [J]. Optoelectron. Technol., 2018,38(3):190-194. (in Chinese)
JUNG S G,CHOI K B,PARK C H,et al. Effects of Cl2 plasma treatment on stability,wettability,and electrical properties of ITO for OLEDs [J]. Opt. Mater., 2019,93:51-57. doi: 10.1016/j.optmat.2019.04.056http://dx.doi.org/10.1016/j.optmat.2019.04.056
KIM J S,CACIALLI F,FRIEND R. Surface conditioning of indium-tin oxide anodes for organic light-emitting diodes [J]. Thin Solid Films, 2003,445(2):358-366. doi: 10.1016/s0040-6090(03)01185-4http://dx.doi.org/10.1016/s0040-6090(03)01185-4
FATHOLLAHI M,AMERI M,MOHAJERANI E,et al. Organic/organic heterointerface engineering to boost carrier injection in OLEDs [J]. Sci. Rep., 2017,7(1):42787-1-11. doi: 10.1038/srep42787http://dx.doi.org/10.1038/srep42787
0
浏览量
164
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构