浏览全部资源
扫码关注微信
1.长春理工大学 光电工程学院,吉林 长春 130022
2.长春理工大学 高功率半导体激光国家重点实验室,吉林 长春 130022
3.海南师范大学物理与电子工程学院 海南省激光技术与光电功能材料重点实验室,海南 海口 571158
4.中国科学院西安光学精密机械研究所 瞬态光学与光子技术国家重点实验室,陕西 西安 710119
[ "吴顺华(1998-),男,江西抚州人,硕士研究生,2019年于华南理工大学获得学士学位,主要从事高功率半导体激光器方面的研究。E-mail: wushunhua2021@163.com" ]
[ "刘国军(1963-),男,吉林长春人,博士,研究员,博士生导师,1990年于清华大学获得博士学位,主要从事光电子技术与应用方面的研究。E-mail: gjliu626@126.com" ]
[ "李特(1981-),男,吉林梅河口人,博士,研究员,硕士生导师,2008年于中国科学院长春光学精密机械与物理研究所获得博士学位,主要从事半导体激光技术、光电子技术与应用等方面的研究。E-mail: Lite@opt.ac.cn" ]
纸质出版日期:2022-05,
收稿日期:2022-01-19,
修回日期:2022-02-11,
扫 描 看 全 文
吴顺华, 刘国军, 王贞福, 等. 低温808 nm高效率半导体激光器[J]. 发光学报, 2022,43(5):786-795.
Shun-hua WU, Guo-jun LIU, Zhen-fu WANG, et al. Low Temperature 808 nm High Efficiency Semiconductor Laser[J]. Chinese Journal of Luminescence, 2022,43(5):786-795.
吴顺华, 刘国军, 王贞福, 等. 低温808 nm高效率半导体激光器[J]. 发光学报, 2022,43(5):786-795. DOI: 10.37188/CJL.20220025.
Shun-hua WU, Guo-jun LIU, Zhen-fu WANG, et al. Low Temperature 808 nm High Efficiency Semiconductor Laser[J]. Chinese Journal of Luminescence, 2022,43(5):786-795. DOI: 10.37188/CJL.20220025.
为了提高低温工作环境下808 nm半导体激光器的输出特性,深入研究了电光转换效率的温度特性。结合载流子泄漏抑制和器件串联电阻的优化考虑,从理论上深入分析了有源区量子阱内的载流子限制现象,提出针对低温工作环境下的势垒高度及相应的量子阱结构设计方法,包括势垒层的材料组分、厚度等重要参数的优化,极大地改善了器件在低温工作环境下的性能。采用优化后的外延结构,制备了腔长2 mm的半导体激光巴条。在工作温度-50 ℃、注入电流为600 A时,巴条输出功率达到799 W,电光转换效率为71%,斜率效率为1.34 W/A;注入电流为400 A时,器件达到最高电光转换效率73.5%,此时的载流子限制效率约为99%,串联电阻为0.43 mΩ;在-60~60 ℃温度范围内,中心波长随温度的漂移系数为0.248 nm/℃。
In order to improve the performance of 808 nm semiconductor laser operating at low temperature
the temperature dependence of electro-optical conversion efficiency was studied. Combining the suppression of carrier leakage and the optimization of the series resistance
the carrier confinement phenomenon in the quantum well was analyzed theoretically. Moreover
the potential barrier height and the corresponding quantum well structure for low temperature operating were proposed
including the optimization of important parameters such as the material composition and thickness of the barrier layer
which showed significant benefit for operation under low temperature. Basing on the optimized epitaxial structure
semiconductor laser bars with a cavity length of 2 mm were fabricated. Under the temperature of -50 ℃
an electro-optical conversion efficiency of 71% was demonstrated with a slope efficiency of 1.34 W/A and an injection current of 600 A. Record high electro-optical conversion efficiency of 73.5% was reached with the injection current of 400 A
while the carrier confinement efficiency was as high as 99%
and the series resistance was as low as 0.43 mΩ. In the temperature range of -60-60 ℃
the shift coefficient of the center wavelength with temperature was about 0.248 nm/℃.
半导体激光器载流子泄漏低温高效率温度效应
semiconductor lasercarrier leakagelow temperaturehigh efficiencytemperature effects
袁庆贺, 井红旗, 张秋月, 等. 砷化镓基近红外大功率半导体激光器的发展及应用[J]. 激光与光电子学进展, 2019, 56(4): 040003-1-14.
YUAN Q H, JING H Q, ZHANG Q Y, et al. Development and applications of GaAs-based near-infrared high power semiconductor laser[J]. Laser Optoelectron. Prog., 2019, 56(4): 040003-1-14. (in Chinese)
陈良惠, 杨国文, 刘育衔. 半导体激光器研究进展[J]. 中国激光, 2020, 47(5): 0500001-1-19.
CHEN L H, YANG G W, LIU Y X. Development of semiconductor lasers[J]. Chin. J. Lasers, 2020, 47(5): 0500001-1-19. (in Chinese)
宁永强, 陈泳屹, 张俊, 等. 大功率半导体激光器发展及相关技术概述[J]. 光学学报, 2021, 41(1): 0114001-1-10.
NING Y Q, CHEN Y Y, ZHANG J, et al. Brief review of development and techniques for high power semiconductor lasers[J]. Acta Opt. Sinica, 2021, 41(1): 0114001-1-10. (in Chinese)
王立军, 宁永强, 秦莉, 等. 大功率半导体激光器研究进展[J]. 发光学报, 2015, 36(1): 1-19.
WANG L J, NING Y Q, QIN L, et al. Development of high power diode laser[J]. Chin. J. Lumin., 2015, 36(1): 1-19. (in Chinese)
李瑞冬, 邹永刚, 田锟, 等. 侧向耦合分布反馈半导体激光器光栅结构及耦合特性[J]. 发光学报, 2021, 42(12): 1921-1927.
LI R D, ZOU Y G, TIAN K, et al. Grating structure and coupling characteristics of laterally-coupled distributed feedback semiconductor lasers[J]. Chin. J. Lumin., 2021, 42(12): 1921-1927. (in Chinese)
姚中辉, 陈红梅, 张子旸. 基于双倾斜沟槽结构的O波段单纵模Fabry-Pérot激光器[J]. 发光学报, 2021, 42(11): 1804-1809.
YAO Z H, CHEN H M, ZHANG Z Y. O-band single longitudinal mode Fabry-Pérot laser based on double slanted slots structure[J]. Chin. J. Lumin., 2021, 42(11): 1804-1809. (in Chinese)
郑权, 赵岭, 钱龙生. 大功率二极管泵浦固体激光器的应用和发展[J]. 光学 精密工程, 2001, 9(1): 6-9.
ZHENG Q, ZHAO L, QIAN L S. Application and development of high power diode-pumped solid-state laser[J]. Opt. Precision Eng., 2001, 9(1): 6-9. (in Chinese)
VANLEEUWEN R, XIONG Y H, WATKINS L S, et al. High power 808 nm VCSEL arrays for pumping of compact pulsed high energy Nd∶YAG lasers operating at 946 nm and 1 064 nm for blue and UV light generation[C]. Proceedings of SPIE 7912, Solid State Lasers XX: Technology and Devices, San Francisco, 2011: 79120Z-1-7.
SEBASTIAN J, HÜLSEWEDE R, PIETRZAK A, et al. Research on 9xx nm diode laser for direct and pumping applications[C]. Proceedings of SPIE 9255, XX International Symposium on High-power Laser Systems and Applications 2014, Chengdu, 2015: 92550Y-1-11.
BONI A, ARSLAN S, ERBERT G, et al. Epitaxial design progress for high power, efficiency, and brightness in 970 nm broad area lasers[J]. Proceedings of SPIE 11668, High-power Diode Laser Technology ⅪⅩ, California, 2021: 1166807-1-8.
HASLER K H, FREVERT C, CRUMP P, et al. Numerical study of high-power semiconductor lasers for operation at sub-zero temperatures[J]. Semicond. Sci. Technol., 2017, 32(4): 045004.
BULASHEVICH K A, MYMRIN V F, KARPOV S Y, et al. Effect of free-carrier absorption on performance of 808 nm AlGaAs-based high-power laser diodes[J]. Semicond. Sci. Technol., 2007, 22(5): 502-510.
RYUH Y, HA K H. Effect of active-layer structures on temperature characteristics of InGaN blue laser diodes[J]. Opt. Express, 2008, 16(14): 10849-10857.
KANSKAR M, EARLES T, GOODNOUGH T J, et al. 73% CW power conversion efficiency at 50 W from 970 nm diode laser bars[J]. Electron. Lett., 2005, 41(5): 245-247.
CAO C S, FAN L, AI I, et al. Recent development of high-power-efficiency 50-W CW TE/TM polarized 808-nm diode laser bar at Lasertel[C]. Proceedings of SPIE 7583, High-power Diode Laser Technology and Applications Ⅷ, San Francisco, 2010: 75830L-1-6.
宋云菲, 王贞福, 李特, 等. 808 nm半导体激光芯片电光转换效率的温度特性机理研究[J]. 物理学报, 2017, 66(10): 104202-1-6.
SONG Y F, WANG Z F, LI T, et al. Efficiency analysis of 808 nm laser diode array under different operating temperatures[J]. Acta Phys. Sinica, 2017, 66(10): 104202-1-6. (in Chinese)
FREVERT C, CRUMP P, BUGGE F, et al. The impact of low Al-content waveguides on power and efficiency of 9xx nm diode lasers between 200 and 300 K[J]. Semicond. Sci. Technol., 2016, 31(2): 025003-1-12.
WANG Z F, LI T, YANG G W, et al. High power, high efficiency continuous-wave 808 nm laser diode arrays[J]. Opt. Laser Technol., 2017, 97: 297-301.
GAPONTSEV V, MOSHEGOV N, BEREZIN I, et al. Highly-efficient high-power pumps for fiber lasers[C]. Proceedings of SPIE 10086, High-power Diode Laser Technology ⅩⅤ, San Francisco, 2017: 1008604-1-10.
FREVERT C, BUGGE F, KNIGGE S, et al. 940 nm QCW diode laser bars with 70% efficiency at 1 kW output power at 203K:analysis of remaining limits and path to higher efficiency and power at 200 K and 300 K[C]. Proceedings of SPIE 9733, High-power Diode Laser Technology and Applications ⅪⅤ, San Francisco, 2016: 97330L-1-13.
庄顺连. 光子器件物理[M]. 贾东方, 王肇颖, 桑梅,译. 第2版. 北京: 电子工业出版社, 2013.
CHUANG S L. Physics of Photanic Devices[M]. JIA D F, WANG Z Y, SANG M, trans. 2nd ed. Beijing: Publishing House of Electronics Industry, 2013. (in Chinese)
ZOU Y, OSINSKI J S, GRODZINSKI P, et al. Experimental study of Auger recombination, gain, and temperature sensitivity of 1.5 μm compressively strained semiconductor lasers[J]. IEEE J. Quantum Electron., 1993, 29(6): 1565-1575.
PETERS M, ROSSIN V, EVERETT M, et al. High-power high-efficiency laser diodes at JDSU[C]. Proceedings of SPIE 6456, High-power Diode Laser Technology and Applications Ⅴ, San Jose, 2007: 64560G-1-11.
SOTOODEH M, KHALID A H, REZAZADEH A A. Empirical low-field mobility model for Ⅲ-Ⅴ compounds applicable in device simulation codes[J]. J. Appl. Phys., 2000, 87(6): 2890-2900.
PIKHTIN N A, SLIPCHENKO S O, SOKOLOVA Z N, et al. Internal optical loss in semiconductor lasers[J]. Semiconductors, 2004, 38(3): 360-367.
0
浏览量
136
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构