浏览全部资源
扫码关注微信
1.内蒙古师范大学 化学与环境科学学院,内蒙古 呼和浩特 010022
2.内蒙古大学 化学化工学院,内蒙古精细有机合成重点实验室,内蒙古 呼和浩特 010021
[ "温雪菲(1996-),女,内蒙古达拉特旗人,硕士研究生,2019年于集宁师范学院获得学士学位,主要从事有机发光材料的合成及性能的研究。E-mail: 1097560502@qq.com" ]
[ "莎仁(1963-),女,内蒙古呼和浩特人,学士,教授,硕士生导师,1985年于内蒙古师范大学获得学士学位,主要从事发光材料、光致变色材料的设计合成及应用的研究。E-mail: sr@imnu.edu.cn" ]
[ "王建国(1982-),男,内蒙古兴和人,博士,教授,博士生导师,2014年于中国科学院化学研究所获得博士学位,主要从事有机光电功能材料的研究。E-mail: wangjg@iccas.ac.cn" ]
纸质出版日期:2022-05,
收稿日期:2022-01-17,
修回日期:2022-02-04,
移动端阅览
温雪菲, 莎仁, 王建国. 刺激响应型AIE水凝胶研究进展[J]. 发光学报, 2022,43(5):642-661.
XUE-FEI WEN, REN SHA, JIAN-GUO WANG. Research Progress of Stimuli-responsive AIE-active Hydrogels. [J]. Chinese journal of luminescence, 2022, 43(5): 642-661.
温雪菲, 莎仁, 王建国. 刺激响应型AIE水凝胶研究进展[J]. 发光学报, 2022,43(5):642-661. DOI: 10.37188/CJL.20220023.
XUE-FEI WEN, REN SHA, JIAN-GUO WANG. Research Progress of Stimuli-responsive AIE-active Hydrogels. [J]. Chinese journal of luminescence, 2022, 43(5): 642-661. DOI: 10.37188/CJL.20220023.
刺激响应水凝胶可以对环境的微小变化产生较大的物理化学变化,在药物传递、生物分离、生物传感器和组织工程等领域具有广泛的应用。但受聚集导致荧光猝灭(ACQ)效应的影响,其在发光相关领域的应用受到限制,聚集诱导发光(AIE)概念的提出解决了这一难题。将AIE分子引入水凝胶体系,获得刺激响应型AIE水凝胶,在生物医学、信息防伪、3D水凝胶驱动器以及软体机器人的开发等多个高科技领域崭露头角。本文将近年来报道的刺激响应型AIE水凝胶按刺激因素分为物理因素(温度和光)、化学因素(pH、溶剂和离子)和生物因素(酶)三大类,分别阐述了水凝胶的制备、响应机理及潜在应用,并针对刺激响应型AIE水凝胶面临的问题和挑战进行了展望。
Stimulus-responsive hydrogels
which can undergo physical and/or chemical changes in response to the minor variations in the environment
are widely applied in the fields of drug delivery
bioseparation
biosensors and tissue engineering. However
due to the aggregation-caused quenching(ACQ) of fluorescence
their applications in luminescence-related fields are extremely limited. Fortunately
aggregation-induced emission(AIE) phenomena perfectly resolved the problem. By incorporating fluorophores with AIE feature into hydrogels
stimuli-responsive AIE-active hydrogels can be obtained. And they have cut a figure in several high-tech fields including biomedical
information anti-counterfeiting
3D hydrogel actuators and soft robots. In this article
we summarized and classified the recently reported stimuli-responsive AIE-active hydrogels into three categories: those are responsive to physical(temperature and light)
chemical(pH
solvent and ion type) and biological(enzyme) stimulus. The preparation
responsive mechanism and applications of these stimuli-responsive AIE-active hydrogels were described respectively. And finally
the problems and challenges faced by stimuli-responsive AIE-active hydrogels are also prospected.
刺激响应型水凝胶聚集诱导发光信息防伪软体机器人药物传递
stimuli-responsive hydrogelsaggregation-induced emissioninformation anti-counterfeitingsoft robotsdrug delivery
GHOBRIL C, GRINSTAFF M W. The chemistry and engineering of polymeric hydrogel adhesives for wound closure: a tutorial[J]. Chem. Soc. Rev., 2015, 44(7): 1820-1835.
LIU W, ZHANG W S, YU X Q, et al. Synthesis and biomedical applications of fluorescent nanogels[J]. Polym. Chem., 2016, 7(37): 5749-5762.
RAMAN R, LANGER R. Biohybrid design gets personal:new materials for patient-specific therapy[J]. Adv. Mater., 2020, 32(13): 1901969-1-19.
LEE S C, KWON I K, PARK K. Hydrogels for delivery of bioactive agents:a historical perspective[J]. Adv. Drug. Deliv. Rev., 2013, 65(1): 17-20.
HE C L, KIM S W, LEE D S. In situ gelling stimuli-sensitive block copolymer hydrogels for drug delivery[J]. J. Control. Release, 2008, 127(3): 189-207.
MEI J, LEUNG N L C, KWOK R T K, et al. Aggregation-induced emission:together we shine, united we soar![J]. Chem. Rev., 2015, 115(21): 11718-11940.
LUO J D, XIE Z L, LAM J W Y, et al. Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole[J]. Chem. Commun., 2001, (18): 1740-1741.
秦安军, 胡蓉. 聚集诱导发光聚合物的机遇与挑战:聚合物之美与聚集体之光相辉映[J]. 发光学报, 2020, 41(9): 1082-1086.
QIN A J, HU R. Prospect and challenge of polymers featuring aggregation-induced emission characteristics[J]. Chin. J. Lumin., 2020, 41(9): 1082-1086. (in Chinese)
彭嘉琪, 陈明, 秦安军, 等. 聚集诱导发光探针用于线粒体靶向和癌细胞识别研究进展[J]. 发光学报, 2021, 42(3): 348-360.
PENG J Q, CHEN M, QIN A J, et al. Progress on aggregation-induced emission probes for mitochondria target and cancer cell identification[J]. Chin. J. Lumin., 2021, 42(3): 348-360. (in Chinese)
WANG T, YIN P, YANG Y, et al. Effect of element iodine on the cell membrane transportability of fluorescent polymers and lysosome-targeted cell imaging[J]. ACS Sustainable Chem. Eng., 2019, 7(6): 6295-6303.
MA H C, QI C X, CHENG C, et al. AIE-active tetraphenylethylene cross-linked N-isopropylacrylamide polymer:a long-term fluorescent cellular tracker[J]. ACS Appl. Mater. Interfaces, 2016, 8(13): 8341-8348.
ZHANG S X, YIN W D, YANG Z M, et al. Functional copolymers married with lanthanide(Ⅲ) ions:a win-win pathway to fabricate rare earth fluorescent materials with multiple applications[J]. ACS Appl. Mater. Interfaces, 2021, 13(4): 5539-5550.
YANG Y, WANG T, YIN P, et al. A general concept for white light emission formation from two complementary colored luminescent dyes[J]. Mater. Chem. Front., 2019, 3(3): 505-512.
LI J, WANG J X, LI H X, et al. Supramolecular materials based on AIE luminogens(AIEgens):construction and applications[J]. Chem. Soc. Rev., 2020, 49(4): 1144-1172.
WANG H Y, HEILSHORN S C. Adaptable hydrogel networks with reversible linkages for tissue engineering[J]. Adv. Mater., 2015, 27(25): 3717-3736.
WU D Y, MEURE S, SOLOMON D. Self-healing polymeric materials:a review of recent developments[J]. Prog. Polym. Sci., 2008, 33(5): 479-522.
HILLEWAERE X K D, PREZ F E D. Fifteen chemistries for autonomous external self-healing polymers and composites[J]. Prog. Polym. Sci., 2015, 49-50: 121-153.
HOU F J, XI B Z, WANG X M, et al. Self-healing hydrogel with cross-linking induced thermo-response regulated light emission property[J]. Colloids Surf. B: Biointerfaces, 2019, 183: 110441-1-10.
GUILLOU O, DAIGUEBONNE C, CALVEZ G, et al. A long journey in lanthanide chemistry:from fundamental crystallogenesis studies to commercial anticounterfeiting taggants[J]. Acc. Chem. Res., 2016, 49(5): 844-856.
TIAN W G, ZHANG J M, YU J, et al. Phototunable full-color emission of cellulose-based dynamic fluorescent materials[J]. Adv. Funct. Mater., 2018, 28(9): 1703548-1-8.
SHI C, SHEN X Y, ZHU Y A, et al. Excitation wavelength-dependent dual-mode luminescence emission for dynamic multicolor anticounterfeiting[J]. ACS Appl. Mater. Interfaces, 2019, 11(20): 18548-18554.
MA Y, DONG Y F, LIU S Y, et al. Chameleon-like thermochromic luminescent materials with controllable response behaviors for multilevel security printing[J]. Adv. Opt. Mater., 2020, 8(6): 1901687-1-6.
LIU Y J, LEE Y H, LEE M R, et al. Flexible three-dimensional anticounterfeiting plasmonic security labels:utilizing Z-axis-dependent SERS readouts to encode multilayered molecular information[J]. ACS Photonics, 2017, 4(10): 2529-2536.
HU L, ZHANG Q, LI X, et al. Stimuli-responsive polymers for sensing and actuation[J]. Mater. Horiz., 2019, 6(9): 1774-1793.
YUK H, LU B Y, ZHAO X H. Hydrogel bioelectronics[J]. Chem. Soc. Rev., 2019, 48(6): 1642-1667.
ZHU C N, BAI T W, WANG H, et al. Single chromophore-based white-light-emitting hydrogel with tunable fluorescence and patternability[J]. ACS Appl. Mater. Interfaces, 2018, 10(45): 39343-39352.
ZHU Q D, VAN VLIET K, HOLTEN-ANDERSEN N, et al. A double-layer mechanochromic hydrogel with multidirectional force sensing and encryption capability[J]. Adv. Funct. Mater., 2019, 29(14): 1808191-1-8.
HAI J, WANG H, SUN P P, et al. Smart responsive luminescent aptamer-functionalized covalent organic framework hydrogel for high-resolution visualization and security protection of latent fingerprints[J]. ACS Appl. Mater. Interfaces, 2019, 11(47): 44664-44672.
KANG H S, HAN S W, PARK C, et al. 3D touchless multiorder reflection structural color sensing display[J]. Sci. Adv., 2020, 6(30): eabb5769-1-10.
QIU H Y, WEI S X, LIU H, et al. Programming multistate aggregation-induced emissive polymeric hydrogel into 3D structures for on-demand information decryption and transmission[J]. Adv. Intell. Syst., 2021, 3(6): 2000239-1-9.
HU Y B, BARBIER L, LI Z, et al. Hydrophilicity-hydrophobicity transformation, thermoresponsive morphomechanics, and crack multifurcation revealed by AIEgens in mechanically strong hydrogels[J]. Adv. Mater., 2021, 33(39): 2101500-1-11.
HESKINS M, GUILLET J E. Solution properties of poly(N-isopropylacrylamide)[J]. J. Macromol. Sci.: Part A-Chem., 1968, 2(8): 1441-1455.
KIM H J, LEE H J, CHUNG J W, et al. A highly fluorescent and photoresponsive polymer gel consisting of poly(acrylic acid) and supramolecular cyanostilbene crosslinkers[J]. Adv. Opt. Mater., 2019, 7(4): 1801348-1-7.
DING Z Y, MA Y, SHANG H X, et al. Fluorescence regulation and photoresponsivity in AIEE supramolecular gels based on a cyanostilbene modified benzene-1,3,5-tricarboxamide derivative[J]. Chem. -Eur. J, 2019, 25(1): 315-322.
ZHAO Y, SHI C, YANG X D, et al. pH- and temperature-sensitive hydrogel nanoparticles with dual photoluminescence for bioprobes[J]. ACS Nano, 2016, 10(6): 5856-5863.
LI Z, LIU P C, JI X F, et al. Bioinspired simultaneous changes in fluorescence color, brightness, and shape of hydrogels enabled by AIEgens[J]. Adv. Mater., 2020, 32(11): 1906493-1-10.
RICHARDSON F S, RIEHL J P. Circularly polarized luminescence spectroscopy[J]. Chem. Rev., 1977, 77(6): 773-792.
MAEDA H, BANDO Y, SHIMOMURA K, et al. Chemical-stimuli-controllable circularly polarized luminescence from anion-responsive π-conjugated molecules[J]. J. Am. Chem. Soc., 2011, 133(24): 9266-9269.
WU S T, CAI Z W, YE Q Y, et al. Enantioselective synthesis of a chiral coordination polymer with circularly polarized visible laser[J]. Angew. Chem. Int. Ed., 2014, 53(47): 12860-12864.
NIU D, JIANG Y Q, JI L K, et al. Self-assembly through coordination and π-stacking:controlled switching of circularly polarized luminescence[J]. Angew. Chem. Int. Ed., 2019, 58(18): 5946-5950.
SHANG H X, DING Z Y, SHEN Y, et al. Multi-color tunable circularly polarized luminescence in one single AIE system[J]. Chem. Sci., 2020, 11(8): 2169-2174.
WU S S, SHI H H, LU W, et al. Aggregation-induced emissive carbon dots gels for octopus-inspired shape/color synergistically adjustable actuators[J]. Angew. Chem. Int. Ed., 2021, 60(40): 21890-21898.
YAN C, KRAMER P L, YUAN R F, et al. Water dynamics in polyacrylamide hydrogels[J]. J. Am. Chem. Soc., 2018, 140(30): 9466-9477.
SHI B B, LIU Y Z, ZHU H T Z, et al. Spontaneous formation of a cross-linked supramolecular polymer both in the solid state and in solution, driven by platinum(Ⅱ) metallacycle-based host-guest interactions[J]. J. Am. Chem. Soc., 2019, 141(16): 6494-6498.
WANG Z F, AN G, ZHU Y, et al. 3D-printable self-healing and mechanically reinforced hydrogels with host-guest non-covalent interactions integrated into covalently linked networks[J]. Mater. Horiz., 2019, 6(4): 733-742.
YANG H L, ZHANG Q P, ZHANG Y M, et al. A novel strong AIE bi-component hydrogel as a multi-functional supramolecular fluorescent material[J]. Dyes Pigm., 2019, 171: 107745-1-8.
ZHAO Q, DAI X Y, YAO H, et al. Stimuli-responsive supramolecular hydrogel with white AIE effect for ultrasensitive detection of Fe3+ and as rewritable fluorescent materials[J]. Dyes Pigm., 2021, 184: 108875-1-9.
JIANG H, QIN Z J, ZHENG Y K, et al. Aggregation-induced electrochemiluminescence by metal-binding protein responsive hydrogel scaffolds[J]. Small, 2019, 15(18): 1901170-1-8.
WANG H, JI X F, LI Y, et al. An ATP/ATPase responsive supramolecular fluorescent hydrogel constructed via electro-static interactions between poly(sodium p-styrenesulfonate) and a tetraphenylethene derivative[J]. J. Mater. Chem. B, 2018, 6(18): 2728-2733.
JI X F, LI Z, LIU X L, et al. A functioning macroscopic “Rubik's Cube” assembled via controllable dynamic covalent interactions[J]. Adv. Mater., 2019, 31(40): 1902365-1-8.
0
浏览量
452
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构