1.浙江师范大学 物理系, 浙江 金华 321004
[ "徐淑君(1997-),女,安徽池州人,硕士研究生,2020年于安庆师范大学获得学士学位,主要从事稀土离子掺杂荧光粉的制备与发光性能的研究。E-mail: 2838110096@qq.com" ]
[ "郭海(1980-),男,江西吉水人,博士,教授,博士生导师,2005年于中国科学技术大学获得博士学位,主要从事新型稀土光学功能材料的研究。E-mail: ghh@zjnu.cn" ]
扫 描 看 全 文
徐淑君, 陈静, 陈礼元, 等. 效应面优化模型获取Y4GeO8∶Bi3+,Eu3+红色荧光粉掺杂浓度[J]. Chinese Journal of Luminescence, 2022,43(5):633-641.
Shu-jun XU, Jing CHEN, Li-yuan CHEN, et al. Optimal Doping Content of Red Emitting Y4GeO8∶Bi3+,Eu3+ Phosphor Designed by Response Surface Methodology[J]. 发光学报, 2022,43(5):633-641.
徐淑君, 陈静, 陈礼元, 等. 效应面优化模型获取Y4GeO8∶Bi3+,Eu3+红色荧光粉掺杂浓度[J]. Chinese Journal of Luminescence, 2022,43(5):633-641. DOI: 10.37188/CJL.20220021.
Shu-jun XU, Jing CHEN, Li-yuan CHEN, et al. Optimal Doping Content of Red Emitting Y4GeO8∶Bi3+,Eu3+ Phosphor Designed by Response Surface Methodology[J]. 发光学报, 2022,43(5):633-641. DOI: 10.37188/CJL.20220021.
使用更直接的方法(效应面优化模型)预测了Y,4,GeO,8,∶Bi,3+,,Eu,3+,样品的最强红光发射。预测最佳样品掺杂的Bi,3+,离子和Eu,3+,离子浓度分别为31.03%和67.36%(摩尔分数)。制备最佳样品后对其光致发光性能进行了测试和表征。荧光粉Y,4,GeO,8,∶31.03%Bi,3+,,67.36%Eu,3+,具有最强的红光发射,并且强度的实验值和理论值之间的差值很小。优化样品的色坐标为(0.645 7,0.349 0),计算出的色纯度为98%,内量子效率高达72.5%。本文提供了一种直接寻找发光最强的荧光粉最佳掺杂浓度的方法,可用于探索各种类型的共掺杂荧光粉。
Herein, a more direct method, response surface methodology, is used to predict the strongest red emission of Y,4,GeO,8,∶Bi,3+,Eu,3+, samples. The concentrations of Bi,3+, and Eu,3+, of the optimal sample were predicted to be 31.03% and 67.36%(in mole ratio), respectively. The optimal sample was prepared and photoluminescent properties were measured and characterized. Y,4,GeO,8,∶31.03%Bi,3+,67.36%Eu,3+, has strongest red emission. The difference between the intensity of experimental value and theoretical value is very small. The color coordinate of the as-prepared sample is (0.645 7, 0.349 0), which is very close to the color coordinate of standard red light (0.670 0, 0.330 0). The luminous color of the sample is pure, and the calculated color purity reaches 98%. What’s more, the internal quantum efficiency of the sample is as high as 72.5%. In a word, this paper provides an approach for searching the optimal doping concentration of phosphors with the strongest luminescence directly, which can be used in exploring all types of co-doped phosphors.
Y4GeO8∶Bi3+Eu3+荧光粉效应面优化模型发光强度
Y4GeO8∶Bi3+Eu3+ phosphorsresponse surface methodologyluminescent intensity
WEI Y, XING G C, LIU K, et al. New strategy for designing orangish-red-emitting phosphor via oxygen-vacancy-induced electronic localization[J]. Light: Sci. Appl., 2019, 8(1): 15-1-9.
LAI S Q, ZHAO M, QIAO J W, et al. Data-driven photoluminescence tuning in Eu2+-doped phosphors[J]. J. Phys. Chem. Lett., 2020, 11(14): 5680-5685.
XIANG J M, ZHENG J M, ZHOU Z W, et al. Enhancement of red emission and site analysis in Eu2+ doped new-type structure Ba3CaK(PO4)3 for plant growth white LEDs[J]. Chem. Eng. J., 2019, 356: 236-244.
WU D, XIAO Y, ZHANG L L, et al. Highly efficient and thermally stable luminescence of Ca3Gd2Si6O18∶Ce3+, Tb3+ phosphors based on efficient energy transfer[J]. J. Mater. Chem. C, 2020, 8(48): 17176-17184.
DANG P P, LI G G, YUN X H, et al. Thermally stable and highly efficient red-emitting Eu3+-doped Cs3GdGe3O9 phosphors for WLEDs:non-concentration quenching and negative thermal expansion[J]. Light:Sci. Appl., 2021, 10(1): 29-1-13.
ZHANG Z W, LI J H, YANG N, et al. A novel multi-center activated single-component white light-emitting phosphor for deep UV chip-based high color-rendering WLEDs[J]. Chem. Eng. J., 2020, 390: 124601-1-10.
TONG Y, CHEN Y H, CHEN S Y Z, et al. Luminescent properties of Na2GdMg2(VO4)3∶Eu3+ red phosphors for NUV excited pc-WLEDs[J]. Ceram. Int., 2021, 47(9): 12320-12326.
章伟, 何梦婷, 乔旭升, 等. Mn4+激活的典型LED红色荧光粉研究进展[J]. 发光学报, 2021, 42(9): 1345-1364.
ZHANG W, HE M T, QIAO X S, et al. Research progress of Mn4+ activated typical LED red phosphors[J]. Chin. J. Lumin., 2021, 42(9): 1345-1364. (in Chinese)
YUE C, ZHU D C, YAN Q, et al. A red-emitting Sr3La(1-x)Eux(AlO)3(BO3)4 phosphor with high thermal stability and color purity for near-UV-excited wLEDs[J]. RSC Adv., 2019, 9(45): 26364-26372.
GUO H, HUANG X Y, ZENG Y J. Synthesis and photoluminescence properties of novel highly thermal-stable red-emitting Na3Sc2(PO4)3∶Eu3+ phosphors for UV-excited white-light-emitting diodes[J]. J. Alloys Compd., 2018, 741: 300-306.
WANG Y, ZHAO B K, DENG B, et al. Spectral properties and Judd-Ofelt analysis of novel red phosphors Gd2InSbO7∶Eu3+ with high color purity for white LEDs[J]. J. Rare Earths, 2021, 39(11): 1327-1335.
BABAJANI N, JAMSHIDI S. Investigation of photocatalytic malachite green degradation by iridium doped zinc oxide nanoparticles:application of response surface methodology[J]. J. Alloys Compd., 2019, 782: 533-544.
WANG J L, WAN W. Optimization of fermentative hydrogen production process using genetic algorithm based on neural network and response surface methodology[J]. Int. J. Hydrogen Energy, 2009, 34(1): 255-261.
YÜCEL E, YÜCEL Y, BELELI B. Optimization of synthesis conditions of PbS thin films grown by chemical bath deposition using response surface methodology[J]. J. Alloys Compd., 2015, 642: 63-69.
LI J, PENG J H, GUO S H, et al. Application of response surface methodology(RSM) for optimization of the sintering process of preparation calcia partially stabilized zirconia(CaO-PSZ) using natural baddeleyite[J]. J. Alloys Compd., 2013, 574: 504-511.
LUO D H. Optimization of total polysaccharide extraction from Dioscorea nipponica Makino using response surface methodology and uniform design[J]. Carbohydr. Polym., 2012, 90(1): 284-288.
CHEN Y H, CHEN J, TONG Y, et al. Y4GeO8∶Er3+, Yb3+ up-conversion phosphors for optical temperature sensor based on FIR technique[J]. J. Rare Earths, 2021, 39(12): 1512-1519.
LU Z W, ZHANG W N, CHEN J, et al. Tunable photoemission and energy transfer of heavily Bi3+, Eu3+ co-doped Y4GeO8 phosphors[J]. J. Lumin., 2021, 232: 117857.
XU B B, TAN D Z, GUAN M J, et al. Broadband near-infrared luminescence from γ-ray irradiated bismuth-doped Y4GeO8 crystals[J]. J. Electrochem. Soc., 2011, 158(9): G203-G206.
ZHOU J C, HUANG X T, YOU J H, et al. Synthesis, energy transfer and multicolor luminescent property of Eu3+-doped LiCa2Mg2V3O12 phosphors for warm white light-emitting diodes[J]. Ceram. Int., 2019, 45(11): 13832-13837.
HUANG X Y, SUN Q, DEVAKUMAR B. Preparation, crystal structure, and photoluminescence properties of high-brightness red-emitting Ca2LuNbO6∶Eu3+ double-perovskite phosphors for high-CRI warm-white LEDs[J]. J. Lumin., 2020, 225: 117373.
HUANG X Y, WANG S Y, LIANG J, et al. Eu3+-activated Ca2YTaO6 double-perovskite compound:a novel highly efficient red-emitting phosphor for near-UV-excited warm w-LEDs[J]. J. Lumin., 2020, 226: 117408-1-9.
LI X, YANG C, LIU Q S, et al. Enhancement of luminescence properties of SrAl2Si2O8∶Eu3+ red phosphor[J]. Ceram. Int., 2020, 46(11): 17376-17382.
ZHENG Z G, ZHANG J F, LIU X Y, et al. Luminescence and self-referenced optical temperature sensing performance in Ca2YZr2Al3O12∶Bi3+, Eu3+ phosphors[J]. Ceram. Int., 2020, 46(5): 6154-6159.
PENG X S, CHEN J, CHEN Y H, et al. Optical thermometry based fluorescence intensity ratio in Y2Mg2Al2Si2O12∶Bi3+, Eu3+ phosphors[J]. J. Alloys Compd., 2021, 885: 161010.
XUE J P, YU Z K, NOH H M, et al. Designing multi-mode optical thermometers via the thermochromic LaNbO4∶Bi3+/Ln3+ (Ln=Eu,Tb,Dy,Sm) phosphors[J]. Chem. Eng. J., 2021, 415: 128977-1-14.
CAO Y X, WANG X C, DING J Y, et al. Constructing a single-white-light emission by finely modulating the occupancy of luminescence centers in europium-doped (Ca1-xSrx)9Bi(PO4)7 for WLEDs[J]. J. Mater. Chem. C, 2020, 8(28): 9576-9584.
WANG J, PENG X S, CHENG D Z, et al. Tunable luminescence and energy transfer in Y2BaAl4SiO12∶Tb3+, Eu3+ phosphors for solid-state lighting[J]. J. Rare Earths, 2021, 39(3): 284-290.
LIU L J, YANG H, MA S C. Experimental study on performance of pneumatic seeding system[J]. Int. J. Agr. Biol. Eng., 2016, 9(6): 84-90.
FU J, YUAN H K, ZHANG D P, et al. Multi-objective optimization of process parameters of longitudinal axial threshing cylinder for frozen corn using RSM and NSGA-Ⅱ[J]. Appl. Sci., 2020, 10(5): 1646-1-13.
LI H F, ZHAO R, JIA Y L, et al. S http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=28019850&type=http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=28019869&type=http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=28019853&type=Zhttp://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=28019872&type=http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=28019861&type=http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=28019859&type=CeO4∶Eu3+ novel red-emitting phosphors:synthesis and photoluminescence properties[J]. ACS Appl. Mater. Interfaces, 2014, 6(5): 3163-3169.
彭晓, 阳维维, 凌东雄, 等. 红色荧光粉Sr3LiSbO6∶Eu3+制备及其发光性质[J]. 发光学报, 2021, 42(4): 455-461.
PENG X, YANG W W, LING D X, et al. Preparation and luminescence properties of red Sr3LiSbO6∶Eu3+ phosphor[J]. Chin. J. Lumin., 2021, 42(4): 455-461. (in Chinese)
LI B, WANG S Y, SUN Q, et al. Novel high-brightness and thermal-stable Ca3Gd(AlO)3(BO3)4∶Eu3+ red phosphors with high colour purity for NUV-pumped white LEDs[J]. Dyes Pigm., 2018, 154: 252-256.
DING K, SIRU A, PANG S, et al. A potential red-emitting phosphor Ca2YTaO6∶Eu3+:luminescence properties, thermal stability and applications for white LEDs[J]. J. Rare Earths, 2021, 39(7): 749-756.
HUA Y B, SEO Y U, KIM S Y, et al. Rare-earth-free Sr2YSb1-xO6∶xMn4+:synthesis, structure, luminescence behavior, thermal stability, and applications[J]. Chem. Eng. J., 2021, 412: 128633-1-13.
0
浏览量
200
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构