浏览全部资源
扫码关注微信
浙江师范大学 物理系, 浙江 金华 321004
[ "徐淑君(1997-),女,安徽池州人,硕士研究生,2020年于安庆师范大学获得学士学位,主要从事稀土离子掺杂荧光粉的制备与发光性能的研究。E-mail: 2838110096@qq.com" ]
[ "郭海(1980-),男,江西吉水人,博士,教授,博士生导师,2005年于中国科学技术大学获得博士学位,主要从事新型稀土光学功能材料的研究。E-mail: ghh@zjnu.cn" ]
纸质出版日期:2022-05,
收稿日期:2022-01-17,
修回日期:2022-02-07,
扫 描 看 全 文
徐淑君, 陈静, 陈礼元, 等. 效应面优化模型获取Y4GeO8∶Bi3+,Eu3+红色荧光粉掺杂浓度[J]. Chinese Journal of Luminescence, 2022,43(5):633-641.
Shu-jun XU, Jing CHEN, Li-yuan CHEN, et al. Optimal Doping Content of Red Emitting Y4GeO8∶Bi3+,Eu3+ Phosphor Designed by Response Surface Methodology[J]. 发光学报, 2022,43(5):633-641.
徐淑君, 陈静, 陈礼元, 等. 效应面优化模型获取Y4GeO8∶Bi3+,Eu3+红色荧光粉掺杂浓度[J]. Chinese Journal of Luminescence, 2022,43(5):633-641. DOI: 10.37188/CJL.20220021.
Shu-jun XU, Jing CHEN, Li-yuan CHEN, et al. Optimal Doping Content of Red Emitting Y4GeO8∶Bi3+,Eu3+ Phosphor Designed by Response Surface Methodology[J]. 发光学报, 2022,43(5):633-641. DOI: 10.37188/CJL.20220021.
使用更直接的方法(效应面优化模型)预测了Y
4
GeO
8
∶Bi
3+
,Eu
3+
样品的最强红光发射。预测最佳样品掺杂的Bi
3+
离子和Eu
3+
离子浓度分别为31.03%和67.36%(摩尔分数)。制备最佳样品后对其光致发光性能进行了测试和表征。荧光粉Y
4
GeO
8
∶31.03%Bi
3+
,67.36%Eu
3+
具有最强的红光发射,并且强度的实验值和理论值之间的差值很小。优化样品的色坐标为(0.645 7,0.349 0),计算出的色纯度为98%,内量子效率高达72.5%。本文提供了一种直接寻找发光最强的荧光粉最佳掺杂浓度的方法,可用于探索各种类型的共掺杂荧光粉。
Herein
a more direct method
response surface methodology
is used to predict the strongest red emission of Y
4
GeO
8
∶Bi
3+
Eu
3+
samples. The concentrations of Bi
3+
and Eu
3+
of the optimal sample were predicted to be 31.03% and 67.36%(in mole ratio)
respectively. The optimal sample was prepared and photoluminescent properties were measured and characterized. Y
4
GeO
8
∶31.03%Bi
3+
67.36%Eu
3+
has strongest red emission. The difference between the intensity of experimental value and theoretical value is very small. The color coordinate of the as-prepared sample is (0.645 7
0.349 0)
which is very close to the color coordinate of standard red light (0.670 0
0.330 0). The luminous color of the sample is pure
and the calculated color purity reaches 98%. What’s more
the internal quantum efficiency of the sample is as high as 72.5%. In a word
this paper provides an approach for searching the optimal doping concentration of phosphors with the strongest luminescence directly
which can be used in exploring all types of co-doped phosphors.
Y4GeO8∶Bi3+Eu3+荧光粉效应面优化模型发光强度
Y4GeO8∶Bi3+Eu3+ phosphorsresponse surface methodologyluminescent intensity
WEI Y, XING G C, LIU K, et al. New strategy for designing orangish-red-emitting phosphor via oxygen-vacancy-induced electronic localization[J]. Light: Sci. Appl., 2019, 8(1): 15-1-9.
LAI S Q, ZHAO M, QIAO J W, et al. Data-driven photoluminescence tuning in Eu2+-doped phosphors[J]. J. Phys. Chem. Lett., 2020, 11(14): 5680-5685.
XIANG J M, ZHENG J M, ZHOU Z W, et al. Enhancement of red emission and site analysis in Eu2+ doped new-type structure Ba3CaK(PO4)3 for plant growth white LEDs[J]. Chem. Eng. J., 2019, 356: 236-244.
WU D, XIAO Y, ZHANG L L, et al. Highly efficient and thermally stable luminescence of Ca3Gd2Si6O18∶Ce3+, Tb3+ phosphors based on efficient energy transfer[J]. J. Mater. Chem. C, 2020, 8(48): 17176-17184.
DANG P P, LI G G, YUN X H, et al. Thermally stable and highly efficient red-emitting Eu3+-doped Cs3GdGe3O9 phosphors for WLEDs:non-concentration quenching and negative thermal expansion[J]. Light:Sci. Appl., 2021, 10(1): 29-1-13.
ZHANG Z W, LI J H, YANG N, et al. A novel multi-center activated single-component white light-emitting phosphor for deep UV chip-based high color-rendering WLEDs[J]. Chem. Eng. J., 2020, 390: 124601-1-10.
TONG Y, CHEN Y H, CHEN S Y Z, et al. Luminescent properties of Na2GdMg2(VO4)3∶Eu3+ red phosphors for NUV excited pc-WLEDs[J]. Ceram. Int., 2021, 47(9): 12320-12326.
章伟, 何梦婷, 乔旭升, 等. Mn4+激活的典型LED红色荧光粉研究进展[J]. 发光学报, 2021, 42(9): 1345-1364.
ZHANG W, HE M T, QIAO X S, et al. Research progress of Mn4+ activated typical LED red phosphors[J]. Chin. J. Lumin., 2021, 42(9): 1345-1364. (in Chinese)
YUE C, ZHU D C, YAN Q, et al. A red-emitting Sr3La(1-x)Eux(AlO)3(BO3)4 phosphor with high thermal stability and color purity for near-UV-excited wLEDs[J]. RSC Adv., 2019, 9(45): 26364-26372.
GUO H, HUANG X Y, ZENG Y J. Synthesis and photoluminescence properties of novel highly thermal-stable red-emitting Na3Sc2(PO4)3∶Eu3+ phosphors for UV-excited white-light-emitting diodes[J]. J. Alloys Compd., 2018, 741: 300-306.
WANG Y, ZHAO B K, DENG B, et al. Spectral properties and Judd-Ofelt analysis of novel red phosphors Gd2InSbO7∶Eu3+ with high color purity for white LEDs[J]. J. Rare Earths, 2021, 39(11): 1327-1335.
BABAJANI N, JAMSHIDI S. Investigation of photocatalytic malachite green degradation by iridium doped zinc oxide nanoparticles:application of response surface methodology[J]. J. Alloys Compd., 2019, 782: 533-544.
WANG J L, WAN W. Optimization of fermentative hydrogen production process using genetic algorithm based on neural network and response surface methodology[J]. Int. J. Hydrogen Energy, 2009, 34(1): 255-261.
YÜCEL E, YÜCEL Y, BELELI B. Optimization of synthesis conditions of PbS thin films grown by chemical bath deposition using response surface methodology[J]. J. Alloys Compd., 2015, 642: 63-69.
LI J, PENG J H, GUO S H, et al. Application of response surface methodology(RSM) for optimization of the sintering process of preparation calcia partially stabilized zirconia(CaO-PSZ) using natural baddeleyite[J]. J. Alloys Compd., 2013, 574: 504-511.
LUO D H. Optimization of total polysaccharide extraction from Dioscorea nipponica Makino using response surface methodology and uniform design[J]. Carbohydr. Polym., 2012, 90(1): 284-288.
CHEN Y H, CHEN J, TONG Y, et al. Y4GeO8∶Er3+, Yb3+ up-conversion phosphors for optical temperature sensor based on FIR technique[J]. J. Rare Earths, 2021, 39(12): 1512-1519.
LU Z W, ZHANG W N, CHEN J, et al. Tunable photoemission and energy transfer of heavily Bi3+, Eu3+ co-doped Y4GeO8 phosphors[J]. J. Lumin., 2021, 232: 117857.
XU B B, TAN D Z, GUAN M J, et al. Broadband near-infrared luminescence from γ-ray irradiated bismuth-doped Y4GeO8 crystals[J]. J. Electrochem. Soc., 2011, 158(9): G203-G206.
ZHOU J C, HUANG X T, YOU J H, et al. Synthesis, energy transfer and multicolor luminescent property of Eu3+-doped LiCa2Mg2V3O12 phosphors for warm white light-emitting diodes[J]. Ceram. Int., 2019, 45(11): 13832-13837.
HUANG X Y, SUN Q, DEVAKUMAR B. Preparation, crystal structure, and photoluminescence properties of high-brightness red-emitting Ca2LuNbO6∶Eu3+ double-perovskite phosphors for high-CRI warm-white LEDs[J]. J. Lumin., 2020, 225: 117373.
HUANG X Y, WANG S Y, LIANG J, et al. Eu3+-activated Ca2YTaO6 double-perovskite compound:a novel highly efficient red-emitting phosphor for near-UV-excited warm w-LEDs[J]. J. Lumin., 2020, 226: 117408-1-9.
LI X, YANG C, LIU Q S, et al. Enhancement of luminescence properties of SrAl2Si2O8∶Eu3+ red phosphor[J]. Ceram. Int., 2020, 46(11): 17376-17382.
ZHENG Z G, ZHANG J F, LIU X Y, et al. Luminescence and self-referenced optical temperature sensing performance in Ca2YZr2Al3O12∶Bi3+, Eu3+ phosphors[J]. Ceram. Int., 2020, 46(5): 6154-6159.
PENG X S, CHEN J, CHEN Y H, et al. Optical thermometry based fluorescence intensity ratio in Y2Mg2Al2Si2O12∶Bi3+, Eu3+ phosphors[J]. J. Alloys Compd., 2021, 885: 161010.
XUE J P, YU Z K, NOH H M, et al. Designing multi-mode optical thermometers via the thermochromic LaNbO4∶Bi3+/Ln3+ (Ln=Eu,Tb,Dy,Sm) phosphors[J]. Chem. Eng. J., 2021, 415: 128977-1-14.
CAO Y X, WANG X C, DING J Y, et al. Constructing a single-white-light emission by finely modulating the occupancy of luminescence centers in europium-doped (Ca1-xSrx)9Bi(PO4)7 for WLEDs[J]. J. Mater. Chem. C, 2020, 8(28): 9576-9584.
WANG J, PENG X S, CHENG D Z, et al. Tunable luminescence and energy transfer in Y2BaAl4SiO12∶Tb3+, Eu3+ phosphors for solid-state lighting[J]. J. Rare Earths, 2021, 39(3): 284-290.
LIU L J, YANG H, MA S C. Experimental study on performance of pneumatic seeding system[J]. Int. J. Agr. Biol. Eng., 2016, 9(6): 84-90.
FU J, YUAN H K, ZHANG D P, et al. Multi-objective optimization of process parameters of longitudinal axial threshing cylinder for frozen corn using RSM and NSGA-Ⅱ[J]. Appl. Sci., 2020, 10(5): 1646-1-13.
LI H F, ZHAO R, JIA Y L, et al. S http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=28019850&type=http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=28019869&type=http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=28019853&type=Zhttp://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=28019872&type=http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=28019861&type=http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=28019859&type=CeO4∶Eu3+ novel red-emitting phosphors:synthesis and photoluminescence properties[J]. ACS Appl. Mater. Interfaces, 2014, 6(5): 3163-3169.
彭晓, 阳维维, 凌东雄, 等. 红色荧光粉Sr3LiSbO6∶Eu3+制备及其发光性质[J]. 发光学报, 2021, 42(4): 455-461.
PENG X, YANG W W, LING D X, et al. Preparation and luminescence properties of red Sr3LiSbO6∶Eu3+ phosphor[J]. Chin. J. Lumin., 2021, 42(4): 455-461. (in Chinese)
LI B, WANG S Y, SUN Q, et al. Novel high-brightness and thermal-stable Ca3Gd(AlO)3(BO3)4∶Eu3+ red phosphors with high colour purity for NUV-pumped white LEDs[J]. Dyes Pigm., 2018, 154: 252-256.
DING K, SIRU A, PANG S, et al. A potential red-emitting phosphor Ca2YTaO6∶Eu3+:luminescence properties, thermal stability and applications for white LEDs[J]. J. Rare Earths, 2021, 39(7): 749-756.
HUA Y B, SEO Y U, KIM S Y, et al. Rare-earth-free Sr2YSb1-xO6∶xMn4+:synthesis, structure, luminescence behavior, thermal stability, and applications[J]. Chem. Eng. J., 2021, 412: 128633-1-13.
0
浏览量
306
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构