浏览全部资源
扫码关注微信
1.广东省东莞生态环境监测站, 广东 东莞 523106
2.东莞理工学院 生态环境与建筑工程学院, 广东 东莞 523008
3.黄埔海关技术中心, 广东 东莞 523000
4.暨南大学 化学与材料学院, 广东 广州 510632
[ "谢宏琴(1971-),女,江苏如皋人,博士,高级工程师,2005年于中国科学院广州地球化学研究所获得博士学位,主要从事环境监测与环境科学的研究。 E-mail: 352775029@qq.com" ]
[ "焦哲(1982-),女,河南漯河人,博士,副教授,2010 年于中山大学获得博士学位,主要从事基于AIEgens的光化学传感器的研究。 E-mail: jiaoz@dgut.edu.cn" ]
[ "黄雪琳(1972-),女,江西高安人,硕士,高级工程师,2001年于南昌大学获得硕士学位,主要从事食品、环境等污染物分析方法的研究。 E-mail: 34056583@qq.com" ]
纸质出版日期:2022-10-05,
收稿日期:2022-05-21,
修回日期:2022-06-06,
扫 描 看 全 文
谢宏琴,谢样梓,王玥婷等.基于近红外聚集诱导发光分子的磁性纳米材料用于光增强杀菌[J].发光学报,2022,43(10):1628-163510.37188/CJL.20220015.
XIE Hong-qin,XIE Yang-zi,WANG Yue-ting,et al.Utilizing NIR AIE Luminogen Based Magnetic Nanoparticle for Light-enhanced Bacterial Killing[J].Chinese Journal of Luminescence,2022,43(10):1628-163510.37188/CJL.20220015.
谢宏琴,谢样梓,王玥婷等.基于近红外聚集诱导发光分子的磁性纳米材料用于光增强杀菌[J].发光学报,2022,43(10):1628-163510.37188/CJL.20220015. DOI:
XIE Hong-qin,XIE Yang-zi,WANG Yue-ting,et al.Utilizing NIR AIE Luminogen Based Magnetic Nanoparticle for Light-enhanced Bacterial Killing[J].Chinese Journal of Luminescence,2022,43(10):1628-163510.37188/CJL.20220015. DOI:
近红外光敏剂由于荧光成像具有光损伤小、穿透力强和空间分辨率高等优点,能显著提高光动力治疗效果。我们合成了近红外聚集诱导探针5,6‑2(4′‑(二苯氨酚)‑[1,1′‑联苯]‑4‑yl) 吡嗪‑2,3‑二甲腈(DCDPP‑2TPA) 用于光增强杀菌。利用聚集态/固态下荧光增强的优势,DCDPP‑2TPA与磁性Fe
3
O
4
纳米材料复合,产生更高活性氧(ROS)用于杀菌。利用SEM、TEM、XRD和荧光光谱研究了该复合材料的结构和性质,并用于大肠杆菌和金黄色葡萄球菌杀菌实验。结果表明,在光照下两种细菌的存活率为7.5%与9.0%, 优于DCDPP⁃2TPA (10%与14%)。同时该复合材料可以方便地实现磁性分离,在光照下产生ROS后循环杀菌。
NIR photosensitizers(PSs) could significantly improve the efficacy of photodynamic therapy due to the long-wavelength favorability for deeper tissue penetration and lower biological damage. In this paper, a deep-red emissive AIEgens 5,6-bis(4′-(diphenylamino)-[1,1′-biphenyl]-4-yl) pyrazine-2,3-dicarbonitrile(DCDPP-2TPA) was synthesized for light-enhanced bacterial killing. Due to the advantage of AIEgens which are ultra-emissive in the aggregate states or solid states, DCDPP-2TPA was incorporated into magnetic nanoparticle to increase aggregation enhanced reactive oxygen species(ROS) generation property as well as magnetic separation convenience. The magnetic particles were studied by scanning electron microscope(SEM), transmission electron microscope(TEM), X-ray diffraction(XRD), and fluorescence spectrophotometer,
etc
. The capacity of bacterial killing was exhibited on
E.coli
and
S. aureus
under light irradiation. Due to the aggregation enhanced ROS generation, the viability of
E.coli
and
S. aureus
treated with DCDPP-2TPA based magnetic nanoparticle with room light illumination for 30 min are 7.5% and 9.0%, which was superior to DCDPP-2TPA(10% and 14% respectively). The significant superiority of magnetic nanoparticles is that it can be withdrawn easily and continuously used for bacteria killing by applying light to induce ROS generation.
聚集诱导发光杀菌材料磁性纳米材料
AIE luminogenmagnetic nanoparticlebacterial killing
RAY P C, KHAN S A, SINGH A K, et al. Nanomaterials for targeted detection and photothermal killing of bacteria [J]. Chem. Soc. Rev., 2012, 41(8): 3193-3209. doi: 10.1039/c2cs15340hhttp://dx.doi.org/10.1039/c2cs15340h
MAZARI S A, ALI E, ABRO R, et al. Nanomaterials: applications, waste-handling, environmental toxicities, and future challenges-a review [J]. J. Environ. Chem. Eng., 2021, 9(2): 105028. doi: 10.1016/j.jece.2021.105028http://dx.doi.org/10.1016/j.jece.2021.105028
XING C F, XU Q L, TANG H W, et al. Conjugated polymer/porphyrin complexes for efficient energy transfer and improving light-activated antibacterial activity [J]. J. Am. Chem. Soc., 2009, 131(36): 13117-13124. doi: 10.1021/ja904492xhttp://dx.doi.org/10.1021/ja904492x
STRASSERT C A, OTTER M, ALBUQUERQUE R Q, et al. Photoactive hybrid nanomaterial for targeting, labeling, and killing antibiotic-resistant bacteria [J]. Angew. Chem. Int. Ed., 2009, 48(42): 7928-7931. doi: 10.1002/anie.200902837http://dx.doi.org/10.1002/anie.200902837
PARK S Y, BAIK H J, OH Y T, et al. A smart polysaccharide/drug conjugate for photodynamic therapy [J]. Chem. Angew. Int. Ed., 2011, 50(7): 1644-1647. doi: 10.1002/anie.201006038http://dx.doi.org/10.1002/anie.201006038
OHULCHANSKYY T Y, DONNELLY D J, DETTY M R, et al. Heteroatom substitution induced changes in excited-state photophysics and singlet oxygen generation in chalcogenoxanthylium dyes: effect of sulfur and selenium substitutions [J]. J. Phys. Chem. B, 2004, 108(25): 8668-8672. doi: 10.1021/jp0370674http://dx.doi.org/10.1021/jp0370674
WU W B, MAO D, HU F, et al. A highly efficient and photostable photosensitizer with near-infrared aggregation-induced emission for image-guided photodynamic anticancer therapy [J]. Adv. Mater., 2017, 29(33): 1700548-1-7. doi: 10.1002/adma.201700548http://dx.doi.org/10.1002/adma.201700548
YUAN Z, LIN C C, HE Y, et al. Near-infrared light-triggered nitric-oxide-enhanced photodynamic therapy and low-temperature photothermal therapy for biofilm elimination [J]. ACS Nano, 2020, 14(3): 3546-3562. doi: 10.1021/acsnano.9b09871http://dx.doi.org/10.1021/acsnano.9b09871
ALMEIDA A, FAUSTINO M A F, TOMÉ J P C. Photodynamic inactivation of bacteria: finding the effective targets [J]. Future Med. Chem., 2015, 7(10): 1221-1224. doi: 10.4155/fmc.15.59http://dx.doi.org/10.4155/fmc.15.59
LUO J D, XIE Z L, LAM J W Y, et al. Aggregation-induced emission of 1-methyl-1, 2, 3, 4, 5-pentaphenylsilole [J]. Chem. Commun., 2001(18): 1740-1741. doi: 10.1039/b105159hhttp://dx.doi.org/10.1039/b105159h
MEI J, LEUNG N L C, KWOK R T K, et al. Aggregation-induced emission: together we shine, united we soar [J]. Chem. Rev., 2015, 115(21): 11718-11940. doi: 10.1021/acs.chemrev.5b00263http://dx.doi.org/10.1021/acs.chemrev.5b00263
张志军, 康苗苗, 王媛玮, 等. 聚集诱导发光材料在光学诊疗中的研究进展 [J]. 发光学报, 2021, 42(3): 361-378. doi: 10.37188/CJL.20210029http://dx.doi.org/10.37188/CJL.20210029
ZHANG Z J, KANG M M, WANG Y W, et al. Recent advances of aggregation-induced emission materials in phototheranostics [J]. Chin. J. Lumin., 2021, 42(3): 361-378. (in Chinese). doi: 10.37188/CJL.20210029http://dx.doi.org/10.37188/CJL.20210029
徐晗, 王宇昕, 景靳彭, 等. 聚集诱导发光增强型金属纳米团簇在生物医学领域的研究进展 [J]. 发光学报, 2021, 42(3): 336-347. doi: 10.37188/CJL.20200385http://dx.doi.org/10.37188/CJL.20200385
XU H, WANG Y X, JING J P, et al. Progress on metal nanoclusters with aggregation-induced emission characteristic in biomedical application [J]. Chin. J. Lumin., 2021, 42(3): 336-347. (in Chinese). doi: 10.37188/CJL.20200385http://dx.doi.org/10.37188/CJL.20200385
彭嘉琪, 陈明, 秦安军, 等. 聚集诱导发光探针用于线粒体靶向和癌细胞识别研究进展 [J]. 发光学报, 2021, 42(3): 348-360. doi: 10.37188/CJL.20200351http://dx.doi.org/10.37188/CJL.20200351
PENG J Q, CHEN M, QIN A J, et al. Progress on aggregation-induced emission probes for mitochondria target and cancer cell identification [J]. Chin. J. Lumin., 2021, 42(3): 348-360. (in Chinese). doi: 10.37188/CJL.20200351http://dx.doi.org/10.37188/CJL.20200351
WU Y H, CHEN Q X, LI Q Y, et al. Daylight-stimulated antibacterial activity for sustainable bacterial detection and inhibition [J]. J. Mater. Chem. B, 2016, 4(38): 6350-6357. doi: 10.1039/c6tb01629dhttp://dx.doi.org/10.1039/c6tb01629d
CHEN S, CHEN Q X, LI Q Y, et al. Biodegradable synthetic antimicrobial with aggregation-induced emissive luminogens for temporal antibacterial activity and facile bacteria detection [J]. Chem. Mater., 2018, 30(5): 1782-1790. doi: 10.1021/acs.chemmater.8b00251http://dx.doi.org/10.1021/acs.chemmater.8b00251
WANG Y L, CHEN M, ALIFU N, et al. Aggregation-induced emission luminogen with deep-red emission for through-skull three-photon fluorescence imaging of mouse [J]. ACS Nano, 2017, 11(10): 10452-10461. doi: 10.1021/acsnano.7b05645http://dx.doi.org/10.1021/acsnano.7b05645
0
浏览量
223
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构