浏览全部资源
扫码关注微信
1.华南理工大学 材料科学与工程学院,发光材料与器件国家重点实验室,广东省光纤激光材料与应用技术重点实验室,广东 广州 510641
2.广西大学 资源环境与材料学院,广西有色金属及特色材料加工重点实验室,广西 南宁 530004
[ "朱兴路(1995-),女,广西贺州人,博士研究生,2018年于广西大学获得学士学位,主要从事过渡金属发光材料的机理和性能的研究。E-mail: xingluzhu2017@163.com" ]
[ "邹炳锁(1965-),男,山东乳山人,博士,教授,博士生导师,1991年于吉林大学获得博士学位,主要从事微纳光电材料与微纳光电器件的研究。E-mail: zoubs@gxu.edu.cn" ]
[ "叶柿(1981-),男,广西昭平人,博士,教授,2009年于北京大学获得博士学位,主要从事稀土/过渡金属发光材料及其器件化、功能复合化的基础研究。E-mail: msyes@scut.edu.cn" ]
纸质出版日期:2022-04-01,
收稿日期:2022-01-05,
修回日期:2022-01-28,
扫 描 看 全 文
朱兴路, 宋恩海, 邹炳锁, 等. 磁耦合Mn2+-Mn2+离子对发光行为研究进展[J]. 发光学报, 2022,43(4):482-500.
Xing-lu ZHU, En-hai SONG, Bing-suo ZOU, et al. Progress of Luminescent Behaviors of Mn2+-Mn2+ Pair with Magnetic Coupling Interaction[J]. Chinese Journal of Luminescence, 2022,43(4):482-500.
朱兴路, 宋恩海, 邹炳锁, 等. 磁耦合Mn2+-Mn2+离子对发光行为研究进展[J]. 发光学报, 2022,43(4):482-500. DOI: 10.37188/CJL.20220006.
Xing-lu ZHU, En-hai SONG, Bing-suo ZOU, et al. Progress of Luminescent Behaviors of Mn2+-Mn2+ Pair with Magnetic Coupling Interaction[J]. Chinese Journal of Luminescence, 2022,43(4):482-500. DOI: 10.37188/CJL.20220006.
过渡金属Mn
2+
掺杂的半导体/绝缘体作为发光材料在照明、显示等领域具有重要应用。Mn
2+
离子具有5个未成对的d电子,掺杂在发光材料中通常具有高自旋态,其容易与近邻的Mn
2+
离子发生交换或超交换作用即磁相互作用。此类相互作用可在分子尺度下对电子自旋产生很强的束缚能力,使得磁耦合Mn
2+
-Mn
2+
离子对的发光行为不同于孤立Mn
2+
离子的发光行为,如荧光寿命变短、异常的发射波长红移/蓝移、多峰发射以及异常的磁光现象等。但由于受到浓度猝灭、缺陷、声子耦合、能量传递、与半导体激子的sp-d交换作用等多因素的影响以及测试技术的限制,对Mn
2+
-Mn
2+
离子间磁相互作用的确认及其对发光行为的影响仍存在较多争议。随着研究的不断深入和一些新的表征手段如光磁测量技术的引入,上述问题可以得到部分解决。本文首先简要介绍过渡金属离子磁相互作用类型及其理论基础;然后综述Mn
2+
-Mn
2+
离子间磁相互作用对其吸收光谱、发射光谱、荧光寿命和磁光效应的影响,并着重比较探讨了能证明Mn
2+
-Mn
2+
磁相互作用的存在及其作用类型的不同技术手段;最后进行总结并对此类材料在LED器件等领域的潜在应用进行了展望。
Transition metal ion Mn
2+
doped semiconductors/insulators as luminescent materials have found significant applications in the fields of light-emitting diodes and displays. Due to the five unpaired electrons of Mn
2+
and normally the high-spin state when used as dopants in luminescent materials
the exchange or superexchange interaction
i.e.
magnetic interaction
should easily take place between Mn
2+
ion and the nearest neighbor Mn
2+
ion. The interaction can generate a strong binding force at the molecular scale to the spin of electrons
making the luminescent behaviors of Mn
2+
-Mn
2+
pair different from that of isolate Mn
2+
like the shortened decay lifetime
abnormal redshift/blueshift of the emissions
multi-band emissions and unusual magneto-optic behavior. However
the confirmation and assignment of magnetic interaction in Mn
2+
-Mn
2+
pair and its effect on luminescence behavior is still controversial because of the interference effects of concentration quenching
defect
phonon coupling
energy transfer
the sp-d exchange coupling between Mn
2+
ions and exciton and the limitation of testing instruments. With the deepening of research and the introduction of some new techniques(like the photomagnetism measurement)
the above issues can be partly solved. This review firstly introduces the fundamental theory and knowledge of magnetic interaction between transition metal ions. Then the effects of magnetic interaction of Mn
2+
-Mn
2+
pair on the absorption spectra
emission spectra
decay lifetime
and magneto-optical effect are reviewed. The virous measurement methods were emphatically compared and discussed to prove the existance of magnetic interaction in Mn
2+
-Mn
2+
and assign the type of interation. Finally
summary and some outlooks are given
concerning the potential applications of such materials in the field of LEDs devices.
Mn2+磁相互作用发光
Mn2+magnetic coupling interactionluminescence
ZHOU Q, DOLGOV L, SRIVASTAVA A M, et al. Mn2+ and Mn4+ red phosphors: synthesis,luminescence and applications in WLEDs. A review [J]. J. Mater. Chem.C, 2018, 6(11):2652-2671.
孙家跃, 杜海燕, 胡文祥. 固体发光材料 [M]. 北京: 化学工业出版社, 2003.
SUN J Y, DU H Y, HU W X. Solid-state Luminescent Materials [M]. Beijing: Chemical Industry Press, 2003. (in Chinese)
BLASSE G, GRABMAIER B C. Luminescent Materials [M]. Berlin: Springer, 1994: 91-107.
KIM J S, JEON P E, CHOI J C, et al. Warm-white-light emitting diode utilizing a single-phase full-color Ba3MgSi2O8∶Eu2+,Mn2+ phosphor [J]. Appl. Phys. Lett., 2004, 84(15):2931-2933.
YANG W J, CHEN T M. White-light generation and energy transfer in SrZn2(PO4)2∶Eu,Mn phosphor for ultraviolet light-emitting diodes [J]. Appl. Phys. Lett., 2006, 88(10):101903-1-3.
KIM J S, KWON A K, YUN H P, et al. Luminescent and thermal properties of full-color emitting X3MgSi2O8∶Eu2+,Mn2+ (X=Ba,Sr,Ca) phosphors for white LED [J]. J. Lumin., 2007, 122-123:583-586.
XIAO F, XUE Y N, MA Y Y, et al. Ba2Ca(B3O6)2∶Eu2+,Mn2+:a potential tunable blue-white-red phosphors for white light-emitting diodes [J]. Phys. B Condens. Matter, 2010, 405(3):891-895.
SETLUR A A, SHIANG J J, HAPPEK U. Eu2+-Mn2+ phosphor saturation in 5 mm light emitting diode lamps [J]. Appl. Phys. Lett., 2008, 92(8):081104-1-3.
MIKOSHIBA S, SHIRAI S, SHINADA S, et al. Saturation of Zn2SiO4∶Mn luminescence under intense VUV excitation [J]. J. Appl. Phys., 1979, 50(2):1088-1090.
MISHRA K, RAUKAS M. Investigation of fluorescence yield of phosphors in vacuum ultraviolet region [J]. J. Electrochem. Soc., 2004, 151(5):H105-H112.
SONG E H, YE S, LIU T H, et al. Tailored Near-Infrared photoemission in fluoride perovskites through activator aggregation and super-exchange between divalent manganese ions [J]. Adv. Sci., 2015, 2(7):1500089-1-9.
CHEN Z T, SONG E H, YE S, et al. Tunable multiple emissions in manganese-concentrated sulfide through simultaneous tailoring of Mn-site coordination and Mn-Mn pair geometry [J]. J. Appl. Phys., 2017, 122(21):213102-1-12.
SONG E H, JIANG X X, ZHOU Y Y, et al. Heavy Mn2+doped MgAl2O4 phosphor for high-efficient near-infrared light-emitting diode and the night-vision application [J]. Adv. Opt. Mater., 2019, 7(24):1901105-1-9.
ZHU X L, MENG S Q, ZHAO Y F, et al. Mn2+-Mn2+ Magnetic coupling effect on photoluminescence revealed by photomagnetism in CsMnCl3 [J]. J. Phys. Chem. Lett., 2020, 11(22):9587-9595.
VISWANATHA R, PIETRYGA J M, KLIMOV V I, et al. Spin-polarized Mn2+ emission from mn-doped colloidal nanocrystals [J]. Phys. Rev. Lett., 2011, 107(6):067402-1-5.
BRADSHAW L R, MAY J W, DEMPSEY J L, et al. Ferromagnetic excited-state Mn2+ dimers in Zn1-xMnxSe quantum dots observed by time-resolved magnetophotoluminescence [J]. Phys. Rev. B, 2014, 89(11):115312-1-11.
戴道生, 钱昆明. 铁磁学-上册 [M]. 北京: 科学出版社, 1987.
DAI D S, QIAN K M. Ferromagnetism [M]. Beijing: Science Press, 1987. (in Chinese)
CARLIN R L. 磁化学 [M]. 万纯娣,译. 南京: 南京大学出版社, 1990.
CARLIN R L. Magnetochemistry [M]. WAN C D, trans. Nanjing: Nanjing University Press, 1990. (in Chinese)
林建华, 荆西平. 无机材料化学 [M]. 北京: 北京大学出版社, 2006.
LIN J H, JING X P. Inorganic Material Chemistry [M]. Beijing: Peking University Press, 2006. (in Chinese)
近角聪信, 太田惠造, 安达健五, 等. 磁性体手册 [M]. 黄锡成, 金龙焕,译. 北京: 冶金工业出版社, 1984.
CHIKAZUMI S, OHTA K, ADACHI K, et al. Handbook of Magnetic Materials [M]. HUANG X C, JIN L H, Trans. Bei-Jing: Metallurgical Industry Press, 1984. (in Chinese)
GOODENOUGH J B. Magnetism and the Chemical Bond [M]. New York: John Wiley, 1963.
VINK A P, DE BRUIN M A, ROKE S, et al. Luminescence of exchange coupled pairs of transition metal ions [J]. J. Electrochem. Soc., 2001, 148(7):E313-1-9.
RONDA C R, AMREIN T. Evidence for exchange-induced luminescence in Zn2SiO4∶Mn [J]. J. Lumin., 1996, 69(5-6):245-248.
MCCLURE D S. Optical spectra of exchange coupled Mn++ ion pairs in ZnS∶MnS [J]. J. Chem. Phys., 1963, 39(11):2850-2855.
TSUJIKAWA I. Absorption lines of manganous fluosilicate hexahydrate [J]. J. P hys.Soc. Jpn., 1963, 18(10):1391-1399.
FERGUSON J, GUGGENHEIM H, TANABE Y. Absorption of light by pairs of like and unlike transition-metal ions [J]. Phys. Rev. Lett., 1965, 14(18):737-738.
FERGUSON J, GUGGENHEIM H, TANABE Y. Exchange effects in the electronic absorption spectrum of Mn (II) in perovskite fluorides [J]. J. Appl. Phys., 1965, 36(3):1046-1047.
TANABE Y, SUGANO S. On the absorption spectra of complex ions.I [J]. J. Phys. Soc. Jpn., 1954, 9(5):753-766.
TANABE Y, SUGANO S. On the absorption spectra of complex ions II [J]. J. Phys. Soc. Jpn., 1954, 9(5):766-779.
CAO R P, LIU X, BAI K L, et al. Synthesis and luminescence properties of RMgPO4∶Mn2+(R=Li,Na,and K) red phosphor [J]. J. Mater. Sci. Mater. Electron., 2017, 28(11):15004-15008.
LIU S Q, ZHANG S Y, MAO N, et al. Broadband deep-red-to-near-infrared emission from Mn2+ in strong crystal-field of nitride MgAlSiN3 [J]. J. Am. Ceram. Soc., 2020, 103(12):6793-6800.
ORIVE J, MESA J L, BALDA R, et al. Enhancement of the luminescent properties of a new red-emitting phosphor,Mn2(HPO3)F2,by Zn substitution [J]. Inorg. Chem., 2011, 50(24):12463-12476.
ZHANG J C, ZHAO L Z, LONG YZ, et al. Color manipulation of intense multiluminescence from CaZnOS∶Mn2+ by Mn2+concentration effect [J]. Chem. Mater., 2015, 27(21):7481-7489.
GUMLICH HE, MOSER R, NEUMANN E. On the Mn-Mn interaction and the structure of optical spectra of ZnS∶Mn [J]. Phys. Status Solidi B, 1967, 24(1):K13-K16.
GOEDE O, THONG DD. Energy transfer processes in (Zn,Mn)S mixed crystals [J]. Phys. Status Solidi B, 1984, 124(1):343-353.
COUNIO G, GACOIN T, BOILOT J P. Synthesis and photoluminescence of Cd1-xMnxS(x≤5) nanocrystals [J]. J. Phys. Chem. B, 1998, 102(27):5257-5260.
CHEN W, SAMMYNAIKEN R, HUANG Y N, et al. Crystal field,phonon coupling and emission shift of Mn2+ in ZnS∶Mn nanoparticles [J]. J. Appl. Phys., 2001, 89(2):1120-1129.
PRADHAN N, PENG X G. Efficient and color-tunable Mn-doped ZnSe nanocrystal emitters:control of optical performance via greener synthetic chemistry [J]. J. Am. Chem. Soc., 2007, 129(11):3339-3347.
ZHOU W C, TANG D S, ZOU B S. Synthesis and photoluminescence of pure and Mn doped CdS nanowires [J]. Phys. E Low Dimension. Syst. Nanostruct., 2013, 47:162-166.
ZHANG Y Y, LIU R B, SHI L J, et al. A model on the Mn2+ luminescence band redshift with Mn (Ⅱ) doping and aggregation within CdS∶Mn microwires [J]. Chin. Phys. Lett., 2014, 31(6):067802-1-4.
ZHOU W C, LIU R B, TANG D S, et al. The effect of dopant and optical micro-cavity on the photoluminescence of Mn-doped ZnSe nanobelts [J]. Nanoscale Res. Lett., 2013, 8(1):314-1-10.
SONG E H, DING S, WU M, et al. Anomalous NIR luminescence in Mn2+-doped fluoride perovskite nanocrystals [J]. Adv. Opt. Mater., 2014, 2(7):670-678.
SONG E H, WANG J L, YE S, et al. Wavelength-tunability and multiband emission from single-site Mn2+ doped CaO through antiferromagnetic coupling and tailored superexchange reactions [J]. Adv. Opt. Mater., 2017, 5(13):1700070-1-10.
HERNÁNDEZ I, RODRÍGUEZ F. Intrinsic and extrinsic photoluminescence in the NH4MnCl3 cubic perovskite:a spectroscopic study [J]. J. Phys.:Condens. Matter, 2003, 15(13):2183-2195.
GOLDBERG V, PACHECO D, MONCORGÉR , et al. Luminescence characteristics of BaMnF4 and KMnF3 [J]. J. Lumin., 1979, 18-19:143-146.
TSUBOI T, IIO K. Inter-sublattice energy transfer in Rb2MnCI4 antiferromagnetic crystals [J]. Phys. Status Solidi B, 1993, 179(1):K47-K51.
HOU L P, ZHOU W C, ZOU B S, et al. Spin-exciton interaction and related micro-photoluminescence spectra of ZnSe∶Mn DMS nanoribbon [J]. Nanotechnology, 2017, 28(10):105202-1-11.
KAMRAN M A, LIU R B, SHI L J, et al. Tunable emission properties by ferromagnetic coupling Mn (Ⅱ) aggregates in Mn-doped CdS microbelts/nanowires [J]. Nanotechnology, 2014, 25(38):385201-1-16.
GERNER P, REINHARD C, GÜDEL H U. Cooperative near-IR to visible photon upconversion in Yb3+-doped MnCl2 and MnBr2:comparison with a series of Yb3+-doped Mn2+halides [J]. Chem. Eur. J., 2004, 10(19):4735-4741.
ASANO S, YAMASHITA N, NAKAO Y, et al. Luminescence et résonance paramagnétique de l'ion Mn2+ dans le luminophore MgS [J]. Phys. Status Solidi B, 1981, 108(1):229-239.
MATSUYAMA I, YAMASHITA N, NAKAMURA K, et al. Photoluminescence of the SrS∶Mn2+ phosphor and Pb2+-sensitized luminescence of the SrS∶Pb2+,Mn2+ phosphor [J]. J. Phys. Soc. Jpn., 1989, 58(2):741-751.
YAMASHITA N, MAEKAWA S, NAKAMURA K, et al. Influence of paired Mn2+ centers on the luminescence spectra of CaS∶Mn2+ [J]. Jpn. J. Appl. Phys., 1990, 29(9R):1729-1732.
BARTHOU C, BENOIT J, BENALLOUL P, et al. Mn2+ concentration effect on the optical properties of Zn2SiO4∶Mn phosphors [J]. J. Electrochem. Soc., 1994, 141(2):524-528.
JIA W Y, BRUNDAGE R T, YEN W M. Isotope effects in the multiphonon relaxation of hydrated and deuterated cesium chloromanganate(CsMnCl3·2H2O,2D2O) [J]. Phys. Rev. B, 1983, 27(1):41-45.
ZHU X L, ZHAO Y F, ZHANG S, et al. Isolated-Mn2+-like luminescent behavior in CsMnF3 caused by competing magnetic interactions at cryogenic temperature [J]. J. Phys. Chem. C, 2021, 125(50):27800-27809.
FURDYNA J K. Diluted magnetic semiconductors [J]. J. Appl. Phys., 1988, 64(4):R29-R64.
MICHLER P. Single Quantum Dots: Fundamentals, Applications, and New Concepts [M]. Berlin: Springer, 2003.
BEAULAC R, ARCHER P I, OCHSENBEIN S T, et al. Mn2+-doped CdSe quantum dots:new inorganic materials for spin-electronics and spin-photonics [J]. Adv. Funct. Mater., 2008, 18(24):3873-3891.
HUNDT A, PULS J, HENNEBERGER F, et al. Spin properties of self-organized diluted magnetic Cd1-xMnxSe quantum dots [J]. Phys. Rev. B, 2004, 69(12):121309-1-4.
SCHMIDT T, SCHEIBNER M, WORSCHECH L, et al. Sign reversal and light controlled tuning of circular polarization in semimagnetic CdMnSe quantum dots [J]. J. Appl. Phys., 2006, 100(12):123109.
BEAULAC R, ARCHER P I, LIU X Y, et al. Spin-polarizable excitonic luminescence in colloidal Mn2+-doped CdSe quantum dots [J]. Nano Lett., 2008, 8(4):1197-1201.
ARCHER P I, SANTANGELO S A, GAMELIN D R. Direct observation of sp-d exchange interactions in colloidal Mn2+-and Co2+-doped CdSe quantum dots [J]. Nano Lett., 2007, 7(4):1037-1043.
CHEN Z T, SONG E H, WU M, et al. Exchange coupled Mn-Mn pair:an approach for super-broadband 1 380 nm emission in α-MnS [J]. Appl. Phys. Lett., 2016, 109(19):191907.
KHAN M S, SHI L J, YANG X T, et al. Optoelectronic and magnetic properties of Mn-doped and Mn-C co-doped wurtzite ZnS:a first-principles study [J]. J. Phys. Condens.Matter, 2019, 31(39):395702-1-13.
FAROOQM I, KHAN M S, YOUSAF M, et al. Antiferromagnetic magnetic polaron formation and optical properties of CVD-Grown Mn-doped zinc stannate (ZTO) [J]. ACS Appl. Electron. Mater., 2020, 2(6):1679-1688.
KHAN M S, SHI L J, ZOU B S, et al. First principle calculations on electronic,magnetic and optical properties of Mn doped and N co-doped CdS [J]. Mater. Res. Express, 2019, 6(11):116126-1-9.
KHAN M S, SHI L J, ZOU B S, et al. Impact of vacancy defects on optoelectronic and magnetic properties of Mn-doped ZnSe [J]. Comp. Mater. Sci., 2020, 174:109493-1-8.
KHAN M S, SHI L J, ULLAH H, et al. Ab initio study of optoelectronic and magnetic properties of Mn-doped ZnS with and without vacancy defects [J]. J. Phys. Condens. Matter, 2019, 31(48):485706-1-11.
卢景雰. 现代电子顺磁共振波谱学及其应用 [M]. 北京: 北京大学医学出版社, 2012.
LU J W. Advanced Electron Paramagnetic Resonance Spectroscopy and Its Application [M]. Beijing: Peking University Medical Press, 2012. (in Chinese)
KENNEDY T A, GLASER E R, KLEIN P B, et al. Symmetry and electronic structure of the Mn impurity in ZnS nanocrystals [J]. Phys. Rev. B, 1995, 52(20):R14356-R14359.
BEERMANN P A G, MCGARVEY B R, MURALIDHARAN S, et al. EPR spectra of Mn2+-doped ZnS quantum dots [J]. Chem. Mater., 2004, 16(5):915-918.
BORSEP H, SRINIVAS R F, DATE S K, et al. Effect of Mn2+ concentration in ZnS nanoparticles on photoluminescence and electron-spin-resonance spectra [J]. Phys. Rev. B, 1999, 60(12):8659-8664.
NISTOR S V, STEFAN M, NISTOR L C, et al. Aggregates of Mn2+ Ions in mesoporous self-assembled cubic ZnS∶Mn quantum dots:composition,localization,structure,and magnetic properties [J]. J. Phys. Chem. C, 2016, 120(26):14454-14466.
SCHNEIDER E E, ENGLAND T S. Paramagnetic resonance at large magnetic dilutions [J]. Physica, 1951, 17(3-4):221-233.
LIU Y, ZHANG J X, HAN B, et al. New insights into Mn-Mn coupling interaction-directed photoluminescence quenching mechanism in Mn2+-doped semiconductors [J]. J. Am. Chem. Soc., 2020, 142(14):6649-6660.
OHKOSHI S, HASHIMOTO K. Photo-magnetic and magneto-optical effects of functionalized metal polycyanides [J]. J. Photoch. Photobiol. C Photochem. Rev., 2001, 2(1):71-88.
GÜTLICH P, GARCIA Y, WOIKE T. Photoswitchable coordination compounds [J]. Coordin. Chem. Rev., 2001, 219-221:839-879.
PEJAKOVI Ć D A, KITAMURA C, MILLER J S, et al. Photoinduced magnetization in the organic-based magnet Mn(TCNE)xy(CH2Cl2) [J]. Phys. Rev. Lett., 2002, 88(5):057202-1-4.
SATO O. Optically switchable molecular solids:photoinduced spin-crossover,photochromism,and photoinduced magnetization [J]. Acc. Chem. Res., 2003, 36(9):692-700.
DUMONT M F, KNOWLES E S, GUIET A, et al. Photoinduced magnetism in core/shell prussian blue analogue heterostructures of KjNik[Cr(CN)6]l·nH2O with RbaCob[Fe(CN)6]c·mH2O [J]. Inorg. Chem., 2011, 50(10):4295-4300.
BORDAGE A, MOULIN R, FONDA E, et al. Evidence of the core-shell structure of (photo)magnetic CoFe prussian blue analogue nanoparticles and peculiar behavior of the surface species [J]. J. Am. Chem. Soc., 2018, 140(32):10332-10343.
DUMONT M F. Nanostructures of Metallophosphates and Cyanometallates for Applications and Physical Studies [D]. Gainesville:University of Florida, 2011.
刘公强. 磁光学 [M]. 上海: 上海科学技术出版社, 2001.
LIU G Q. Magnetooptics [M]. Shanghai: Shanghai Science and Technology Press, 2001. (in Chinese)
王育华, 王赵锋, 董其铮, 等. PDP用发光材料的研究进展 [J]. 发光学报, 2012, 33(4):347-365.
WANG Y H, WANG Z F, DONG Q Z, et al. Process in PDP luminescence materials [J]. Chin. J. Lumin., 2012, 33(4):347-365. (in Chinese)
YANG W J, LUO L Y, CHEN T M, et al. Luminescence and energy transfer of Eu-and Mn-coactivated CaAl2Si2O8 as a potential phosphor for white-light UVLED [J]. Chem. Mater., 2005, 17(15):3883-3888.
GUO N, YOU H P, SONG Y H, et al. White-light emission from a single-emitting-component Ca9Gd(PO4)7∶Eu2+,Mn2+ phosphor with tunable luminescent properties for near-UV light-emitting diodes [J]. J. Mater. Chem., 2010, 20(41):9061-9067.
ZHU G, XIN S Y, WEN Y, et al. Warm white light generation from a single phased phosphor Sr10[(PO4)5.5(BO4)0.5](BO2)∶Eu2+,Mn2+,Tb3+ for light emitting diodes [J]. RSC Adv., 2013, 3(24):9311-9318.
SHANG M M, LI C X, LIN J. How to produce white light in a single-phase host [J]. Chem. Soc. Rev., 2014, 43(5):1372-1386.
BAI X W, ZHONG H Z, CHEN B K, et al. Pyridine-modulated Mn ion emission properties of C10H12N2MnBr4 and C5H6NMnBr3 single crystals [J]. J. Phys. Chem. C, 2018, 122(5):3130-3137.
WANG S Y, HAN X X, KOU T T, et al. Lead-free MnII-based red-emitting hybrid halide (CH6N3)2MnCl4 toward high performance warm WLEDs [J]. J. Mater. Chem. C, 2021, 9(14):4895-4902.
林坚, 陈德睢, 沈家辉, 等. 金属硫族簇基半导体中的Mn2+发光 [J]. 发光学报, 2021, 42(7):953-975.
LIN J, CHEN D S, SHEN J H, et al. Luminescence of Mn2+in metal chalcogenide cluster-based semiconductors [J]. Chin. J. Lumin., 2021, 42(7):953-975. (in Chinese)
0
浏览量
805
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构