浏览全部资源
扫码关注微信
1.北京理工大学 光电学院,北京 100081
2.北京理工大学 材料学院,北京 100081
[ "刘秀(1988-),男,山东莱芜人,博士,2017年于钢铁研究总院获得博士学位,主要从事量子点材料及其显示应用方向的研究。E-mail: liuxiu44@163.com" ]
[ "杨高岭(1987-),男,河南鹿邑人,博士,副研究员,2016年于北京理工大学获得博士学位,主要从事微纳光刻与智能显示方向的研究。E-mail: glyang@bit.edu.cn" ]
纸质出版日期:2022-03,
收稿日期:2021-12-15,
修回日期:2021-12-29,
移动端阅览
刘秀, 车艳玲, 杨高岭, 等. 上转换发光量子点[J]. 发光学报, 2022,43(3):297-313.
XIU LIU, YAN-LING CHE, GAO-LING YANG, et al. Upconversion Luminescence in Quantum Dots. [J]. Chinese journal of luminescence, 2022, 43(3): 297-313.
刘秀, 车艳玲, 杨高岭, 等. 上转换发光量子点[J]. 发光学报, 2022,43(3):297-313. DOI: 10.37188/CJL.20210394.
XIU LIU, YAN-LING CHE, GAO-LING YANG, et al. Upconversion Luminescence in Quantum Dots. [J]. Chinese journal of luminescence, 2022, 43(3): 297-313. DOI: 10.37188/CJL.20210394.
光子上转换是一种重要的非线性反斯托克斯发光现象,在激光、显示、光伏、信息安全以及生物成像与诊疗等领域具有应用前景。与研究较多的有机分子三重态-三重态湮灭和稀土掺杂纳米颗粒上转换发光材料相比,上转换量子点可以在宽光谱激发范围内实现上转换发光,具有频谱吸收宽、发光效率高、近红外可吸收、能带可调、尺寸小以及稳定性高等特点,引起了领域内的关注。本文介绍了上转换发光的种类及机理,对近年来上转换发光量子点的研究进展进行了总结,重点分析了基于激发态吸收的半导体双量子点的类型和设计原理,探讨了上转换发光量子点在发光二极管(LED)、光电探测、生物标记、太阳能电池等方面的应用潜力,特别是未来发展面临的挑战和前景。
Photon upconversion(UC)
a nonlinear optical process that converts multiple low-energy photons into a single high-energy photon
is of significant importance in many fields
such as laser
display
photovoltaic
information security
bioimaging and diagnosis. In compare with the well developed lanthanide-doped nanocrystals and triple-triple annihilation
UC quantum dots can achieve UC luminescence under a wide spectral excitation range
which are emerging as promising candidates for many photonic applications due to their wide spectral absorption
high luminous efficiency
near-infrared absorption
tunable energy band
small size and high stability. In this short review
we summarize the progress of upconversion semiconductor quantum dots with the description of basic mechanisms
recent progress of different types of UC quantum dots
especially UC dual quantum dots that based on excited state absorption
discuss the application potential of UC quantum dots in light-emitting diodes
detectors
solar cells and biomarkers
then we conclude with a brief prespective about the challenges and future prospects in this field.
上转换发光量子点能带调控半导体纳米晶
upconversion luminescencequantum dotsenergy band engineeringsemiconductor nanocrystals
ZHOU J, LIU Q, FENG W, et al. Upconversion luminescent materials: advances and applications [J]. Chem. Rev., 2015, 115(1):395-465.
ZHOU B, SHI B Y, JIN D Y, et al. Controlling upconversion nanocrystals for emerging applications [J]. Nat. Nanotechnol., 2015, 10(11):924-936.
JOARDER B, YANAI N, KIMIZUKA N. Solid-state photon upconversion materials:structural integrity and triplet-singlet dual energy migration [J]. J. Phys. Chem. Lett., 2018, 9(16):4613-4624.
YAO W J, TIAN Q Y, WU W. Tunable emissions of upconversion fluorescence for security applications [J]. Adv. Opt. Mater., 2019, 7(6):1801171-1-19.
JALANI G, TAM V, VETRONE F, et al. Seeing,targeting and delivering with upconverting nanoparticles [J]. J. Am. Chem. Soc., 2018, 140(35):10923-10931.
HUANG Z Y, TANG M L. Semiconductor nanocrystal light absorbers for photon upconversion [J]. J. Phys. Chem. Lett., 2018, 9(21):6198-6206.
贺飞, 盖世丽, 杨飘萍, 等. 稀土上转换荧光材料的发光性质调变及其应用 [J]. 发光学报, 2018, 39(1):92-106.
HE F, GAI S L, YANG P P, et al. Luminescence modification and application of the lanthanide upconversion fluorescence materials [J]. Chin. J. Lumin., 2018, 39(1):92-106. (in Chinese)
ALL A H, ZENG X, TEH D B L, et al. Expanding the toolbox of upconversion nanoparticles for in vivo optogenetics and neuromodulation [J]. Adv. Mater., 2019, 31(41):1803474-1-15.
WEN S H, ZHOU J J, SCHUCK P J, et al. Future and challenges for hybrid upconversion nanosystems [J]. Nat. Photonics, 2019, 13(12):828-838.
ZHANG Y, ZHU X H, ZHANG Y. Exploring heterostructured upconversion nanoparticles:from rational engineering to diverse applications [J]. ACS Nano, 2021, 15(3):3709-3735.
DENG R R, QIN F, CHEN R F, et al. Temporal full-colour tuning through non-steady-state upconversion [J]. Nat. Nanotechnol., 2015, 10(3):237-242.
ZHANG H X, FAN Y, PEI P, et al. Tm3+ -sensitized NIR-Ⅱ fluorescent nanocrystals for in vivo information storage and decoding [J]. Angew. Chem. Int. Ed., 2019, 58(30):10153-10157.
QIU X C, ZHOU Q W, ZHU X J, et al. Ratiometric upconversion nanothermometry with dual emission at the same wavelength decoded via a time-resolved technique [J]. Nat. Commun., 2020, 11(1):4-1-9.
LAMON S, WU Y, ZHANG Q, et al. Nanoscale optical writing through upconversion resonance energy transfer [J]. Sci. Adv., 2021, 7(9):eabe2209-1-10.
WANG X, YAKOVLIEV A, OHULCHANSKYY T Y, et al. Efficient erbium-sensitized core/shell nanocrystals for short wave infrared bioimaging [J]. Adv. Opt. Mater., 2018, 6(20):1800690-1-7.
NATTESTAD A, CHENG Y Y, MACQUEEN R W, et al. Dye-sensitized solar cell with integrated triplet-triplet annihilation upconversion system [J]. J. Phys. Chem. Lett., 2013, 4(12):2073-2078.
LI C H, KOENIGSMANN C, DENG F, et al. Photocurrent enhancement from solid-state triplet-triplet annihilation upconversion of low-intensity,low-energy photons [J]. ACS Photonics, 2016, 3(5):784-790.
HILL S P, DILBECK T, BADUELL E, et al. Integrated photon upconversion solar cell via molecular self-assembled bilayers [J]. ACS Energy Lett., 2016, 1(1):3-8.
HAGSTROM A L, WEON S, CHOI W, et al. Triplet-triplet annihilation upconversion in broadly absorbing layered film systems for sub-bandgap photocatalysis [J]. ACS Appl. Mater. Interfaces, 2019, 11(14):13304-13318.
YANAI N, KIMIZUKA N. New triplet sensitization routes for photon upconversion:thermally activated delayed fluorescence molecules,inorganic nanocrystals,and singlet-to-triplet absorption [J]. Acc. Chem. Res., 2017, 50(10):2487-2495.
PIETRYGA J M, PARK Y S, LIM J, et al. Spectroscopic and device aspects of nanocrystal quantum dots [J]. Chem. Rev., 2016, 116(18):10513-10622.
SHU Y F, LIN X, QIN H Y, et al. Quantum dots for display applications [J]. Angew. Chem. Int. Ed., 2020, 59(50):22312-22323.
EFROS A L, BRUS L E. Nanocrystal quantum dots:from discovery to modern development [J]. ACS Nano, 2021, 15(4):6192-6210.
PANFIL Y E, ODED M, BANIN U. Colloidal quantum nanostructures:emerging materials for display applications [J]. Angew. Chem. Int. Ed., 2018, 57(16):4274-4295.
DE ARQUER F P G, TALAPIN D V, KLIMOV V I, et al. Semiconductor quantum dots:technological progress and future challenges [J]. Science, 2021, 373(6555):eaaz8541.
COLVIN V L, SCHLAMP M C, ALIVISATOS A P. Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer [J]. Nature, 1994, 370(6488):354-357.
DAI X L, ZHANG Z X, JIN Y Z, et al. Solution-processed,high-performance light-emitting diodes based on quantum dots [J]. Nature, 2014, 515(7525):96-99.
YANG Y X, ZHENG Y, CAO W R, et al. High-efficiency light-emitting devices based on quantum dots with tailored nanostructures [J]. Nat. Photonics, 2015, 9(4):259-266.
赵越, 高旭鹏, 路坡, 等. 量子点白光LEDs及其在智慧照明中的应用 [J]. 液晶与显示, 2021, 36(1):187-202.
ZHAO Y, GAO X P, LU P, et al. Quantum dot-based white LEDs and their applications of smart lighting [J]. Chin. J. Liq. Cryst. Disp., 2021, 36(1):187-202. (in Chinese)
关小雅, 王洪哲, 申怀彬, 等. 面向显示应用的量子点发光器件研究进展 [J]. 液晶与显示, 2021, 36(1):176-186.
GUAN X Y, WANG H Z, SHEN H B, et al. Research progress of quantum dot light-emitting devices for display application [J]. Chin. J. Liq. Cryst. Disp., 2021, 36(1):176-186. (in Chinese)
赵芳青, 郝建华, 王恺. 无镉无铅环保型蓝光量子点及其发光二极管器件 [J]. 液晶与显示, 2021, 36(1):203-215.
ZHAO F Q, HAO J H, WANG K. Cadmium-free and lead-free environment-friendly blue quantum dots and light-emitting diodes [J]. Chin. J. Liq. Cryst. Disp., 2021, 36(1):203-215. (in Chinese)
SHIRASAKI Y, SUPRAN G J, BAWENDI M G, et al. Emergence of colloidal quantum-dot light-emitting technologies [J]. Nat. Photonics, 2013, 7(1):13-23.
DEUTSCH Z, NEEMAN L, ORON D. Luminescence upconversion in colloidal double quantum dots [J]. Nat. Nanotechnol., 2013, 8(9):649-653.
HUANG Z Y, LI X, MAHBOUB M, et al. Hybrid molecule-nanocrystal photon upconversion across the visible and near-infrared [J]. Nano Lett., 2015, 15(8):5552-5557.
MAKAROV N S, LIN Q L, PIETRYGA J M, et al. Auger up-conversion of low-intensity infrared light in engineered quantum dots [J]. ACS Nano, 2016, 10(12):10829-10841.
YE Z K, LIN X, WANG N, et al. Phonon-assisted up-conversion photoluminescence of quantum dots [J]. Nat. Commun., 2021, 12(1):4283-1-9.
ZHENG W, HUANG P, GONG Z L, et al. Near-infrared-triggered photon upconversion tuning in all-inorganic cesium lead halide perovskite quantum dots [J]. Nat. Commun., 2018, 9(1):3462.
QIU X C, ZHU X J, SU X L, et al. Near-infrared upconversion luminescence and bioimaging in vivo based on quantum dots [J]. Adv. Sci., 2019, 6(5):1801834-1-8.
CHEN E Y, MILLEVILLE C, ZIDE J M O, et al. Upconversion of low-energy photons in semiconductor nanostructures for solar energy harvesting [J]. MRS Energy Sustain., 2018, 5:14-1-17.
ZHOU W J, SHANG Y Q, DE ARQUER F P G, et al. Solution-processed upconversion photodetectors based on quantum dots [J]. Nat. Electron., 2020, 3(5):251-258.
BOYD R W. Nonlinear Optics [M]. 3rd ed. Amsterdam: Academic Press, 2008.
VERBIEST T, CLAYS K, RODRIGUEZ V. Second-order Nonlinear Optical Characterization Techniques:An Introduction [M]. Boca Raton: CRC Press, 2009.
石顺祥, 陈国夫, 赵卫. 非线性光学 [M]. 第2版. 西安: 西安电子科技大学出版社, 2012.
SHI S X, CHEN G F, ZHAO W. Nonlinear Optics [M]. 2nd ed. Xi’an: Xidian University Press, 2012. (in Chinese)
FRANKEN P A, HILL A E, PETERS C W, et al. Generation of optical harmonics [J]. Phys. Rev. Lett., 1961, 7(4):118-119.
BLOEMBERGEN N, CHANG R K, LEE C H. Second-harmonic generation of light in reflection from media with inversion symmetry [J]. Phys. Rev. Lett., 1966, 16(22):986-989.
GUYOT-SIONNEST P, CHEN W, SHEN Y R. General considerations on optical second-harmonic generation from surfaces and interfaces [J]. Phys. Rev. B, 1986, 33(12):8254-8263.
PANTAZIS P, MALONEY J, WU D, et al. Second harmonic generating (SHG) nanoprobes for in vivo imaging [J]. Proc. Natl. Acad. Sci. USA, 2010, 107(33):14535-14540.
KAISER W, GARRETT C G B. Two-photon excitation in CaF2∶Eu2+ [J]. Phys. Rev. Lett., 1961, 7(6):229-231.
GU Z Y, WANG K Y, SUN W Z, et al. Two-photon pumped CH3NH3PbBr3 perovskite microwire lasers [J]. Adv. Opt. Mater., 2016, 4(3):472-479.
SINGH H, SREEDHARAN S, TIWARI K, et al. Two photon excitable graphene quantum dots for structured illumination microscopy and imaging applications:lysosome specificity and tissue-dependent imaging [J]. Chem. Commun., 2019, 55(4):521-524.
UENO K, JUODKAZIS S, MIZEIKIS V, et al. Clusters of closely spaced gold nanoparticles as a source of two-photon photoluminescence at visible wavelengths [J]. Adv. Mater., 2008, 20(1):26-30.
ZOU S Y, YANG G L, YANG T S, et al. Template-free synthesis of high-yield Fe-doped cesium lead halide perovskite ultralong microwires with enhanced two-photon absorption [J]. J. Phys. Chem. Lett., 2018, 9(17):4878-4885.
GUZELTURK B, KELESTEMUR Y, AKGUL M Z, et al. Ultralow threshold one-photon- and two-photon-pumped optical gain media of blue-emitting colloidal quantum dot films [J]. J. Phys. Chem. Lett., 2014, 5(13):2214-2218.
张焕君, 董兴邦, 李海宁, 等. 六方相LaOF∶Er,Yb的上转换发光及温度传感特性 [J]. 发光学报, 2020, 41(5):536-541.
ZHANG H J, DONG X B, LI H N, et al. Upconversion emission and temperature sensing of R-LaOF∶Er,Yb [J]. Chin. J. Lumin., 2020, 41(5):536-541. (in Chinese)
邓亚静, 牛春晖. Ho3+/Yb3+共掺氟氧化物玻璃陶瓷的上转换发光特性 [J]. 发光学报, 2019, 40(7):857-864.
DENG Y J, NIU C H. Up-conversion luminescence properties of Ho3+/Yb3+ co-doped glass ceramic [J]. Chin. J. Lumin., 2019, 40(7):857-864. (in Chinese)
HELMCHEN F, DENK W. Deep tissue two-photon microscopy [J]. Nat. Methods, 2005, 2(12):932-940.
KAWATA S, SUN H B, TANAKA T, et al. Finer features for functional microdevices [J]. Nature, 2001, 412(6848):697-698.
DONG H, SUN L D, YAN C H. Energy transfer in lanthanide upconversion studies for extended optical applications [J]. Chem. Soc. Rev., 2015, 44(6):1608-1634.
TEITELBOIM A, MEIR N, KAZES M, et al. Colloidal double quantum dots [J]. Acc. Chem. Res., 2016, 49(5):902-910.
TEITELBOIM A, ORON D. Broadband near-infrared to visible upconversion in quantum dot-quantum well heterostructures [J]. ACS Nano, 2016, 10(1):446-452.
MILLEVILLE C C, CHEN E Y, LENNON K R, et al. Engineering efficient photon upconversion in semiconductor heterostructures [J]. ACS Nano, 2019, 13(1):489-497.
YANG G L, MEIR N, RAANAN D, et al. Band gap engineering improves the efficiency of double quantum dot upconversion nanocrystals [J]. Adv. Funct. Mater., 2019, 29(23):1900755-1-9.
YANG G L, ZHONG H Z. Multi-dimensional quantum nanostructures with polarization properties for display applications [J]. Isr. J. Chem., 2019, 59(8):639-648.
BERENDS A C, DE MELLO DONEGA C. Ultrathin one- and two-dimensional colloidal semiconductor nanocrystals:pushing quantum confinement to the limit [J]. J. Phys. Chem. Lett., 2017, 8(17):4077-4090.
NASILOWSKI M, MAHLER B, LHUILLIER E, et al. Two-dimensional colloidal nanocrystals [J]. Chem. Rev., 2016, 116(18):10934-10982.
CHEN E Y, LI Z H, MILLEVILLE C C, et al. CdSe(Te)/CdS/CdSe rods versus CdTe/CdS/CdSe spheres:morphology-dependent carrier dynamics for photon upconversion [J]. IEEE J. Photovolt., 2018, 8(3):746-751.
KHAN A H, BERTRAND G H V, TEITELBOIM A, et al. CdSe/CdS/CdTe core/barrier/crown nanoplatelets:synthesis,optoelectronic properties,and multiphoton fluorescence upconversion [J]. ACS Nano, 2020, 14(4):4206-4215.
KHOLMICHEVA N, RAZGONIAEVA N, YADAV P, et al. Enhanced emission of nanocrystal solids featuring slowly diffusive excitons [J]. J. Phys. Chem. C, 2017, 121(3):1477-1487.
YANG G L, KAZES M, RAANAN D, et al. Bright near-infrared to visible upconversion double quantum dots based on a type-Ⅱ/type-Ⅰ heterostructure [J]. ACS Photonics, 2021, 8(7):1909-1916.
DEL ÁGUILA A G, DO T T H, XING J, et al. Efficient up-conversion photoluminescence in all-inorganic lead halide perovskite nanocrystals [J]. Nano Res., 2020, 13(7):1962-1969.
AKIZUKI N, AOTA S, MOURI S, et al. Efficient near-infrared up-conversion photoluminescence in carbon nanotubes [J]. Nat. Commun., 2015, 6(1):8920-1-6.
ZHANG J, LI D H, CHEN R J, et al. Laser cooling of a semiconductor by 40 Kelvin [J]. Nature, 2013, 493(7433):504-508.
ZHANG Q, LIU X F, UTAMA M I B, et al. Phonon-assisted anti-Stokes lasing in ZnTe nanoribbons [J]. Adv. Mater., 2016, 28(2):276-283.
THOMPSON N J, WILSON M W B, CONGREVE D N, et al. Energy harvesting of non-emissive triplet excitons in tetracene by emissive PbS nanocrystals [J]. Nat. Mater., 2014, 13(11):1039-1043.
MONGIN C, GARAKYARAGHI S, RAZGONIAEVA N, et al. Direct observation of triplet energy transfer from semiconductor nanocrystals [J]. Science, 2016, 351(6271):369-372.
LI X, SLYKER L W, NICHOLS V M, et al. Ligand binding to distinct sites on nanocrystals affecting energy and charge transfer [J]. J. Phys. Chem. Lett., 2015, 6(9):1709-1713.
HUANG Z Y, XU Z H, MAHBOUB M, et al. Enhanced near-infrared-to-visible upconversion by synthetic control of PbS nanocrystal triplet photosensitizers [J]. J. Am. Chem. Soc., 2019, 141(25):9769-9772.
HUANG Z Y, LI X, YIP B D, et al. Nanocrystal size and quantum yield in the upconversion of green to violet light with CdSe and anthracene derivatives [J]. Chem. Mater., 2015, 27(21):7503-7507.
HUANG Z Y, SIMPSON D E, MAHBOUB M, et al. Ligand enhanced upconversion of near-infrared photons with nanocrystal light absorbers [J]. Chem. Sci., 2016, 7(7):4101-4104.
LI X, FAST A, HUANG Z Y, et al. Complementary lock-and-key ligand binding of a triplet transmitter to a nanocrystal photosensitizer [J]. Angew. Chem. Int. Ed., 2017, 56(20):5598-5602.
GRAY V, XIA P, HUANG Z Y, et al. CdS/ZnS core-shell nanocrystal photosensitizers for visible to UV upconversion [J]. Chem. Sci., 2017, 8(8):5488-5496.
ZHANG J, KOUNO H, YANAI N, et al. Number of surface-attached acceptors on a quantum dot impacts energy transfer and photon upconversion efficiencies [J]. ACS Photonics, 2020, 7(7):1876-1884.
VANORMAN Z A, BIEBER A S, WIEGHOLD S, et al. Green-to-blue triplet fusion upconversion sensitized by anisotropic CdSe nanoplatelets [J]. Chem. Mater., 2020, 32(11):4734-4742.
HUANG Z Y, TANG M L. Designing transmitter ligands that mediate energy transfer between semiconductor nanocrystals and molecules [J]. J. Am. Chem. Soc., 2017, 139(28):9412-9418.
RONCHI A, CAPITANI C, PINCHETTI V, et al. High photon upconversion efficiency with hybrid triplet sensitizers by ultrafast hole-routing in electronic-doped nanocrystals [J]. Adv. Mater., 2020, 32(37):2002953-1-7.
XIA P, RAULERSON E K, COLEMAN D, et al. Achieving spin-triplet exciton transfer between silicon and molecular acceptors for photon upconversion [J]. Nat. Chem., 2020, 12(2):137-144.
LAI R C, SANG Y B, ZHAO Y, et al. Triplet sensitization and photon upconversion using InP-based quantum dots [J]. J. Am. Chem. Soc., 2020, 142(47):19825-19829.
HAN Y Y, HE S, LUO X, et al. Triplet sensitization by “self-trapped” excitons of nontoxic CuInS2 nanocrystals for efficient photon upconversion [J]. J. Am. Chem. Soc., 2019, 141(33):13033-13037.
MASE K, OKUMURA K, YANAI N, et al. Triplet sensitization by perovskite nanocrystals for photon upconversion [J]. Chem. Commun., 2017, 53(59):8261-8264.
HE S, LUO X, LIU X, et al. Visible-to-ultraviolet upconversion efficiency above 10% sensitized by quantum-confined perovskite nanocrystals [J]. J. Phys. Chem. Lett., 2019, 10(17):5036-5040.
NIENHAUS L, CORREA-BAENA J P, WIEGHOLD S, et al. Triplet-sensitization by lead halide perovskite thin films for near-infrared-to-visible upconversion [J]. ACS Energy Lett., 2019, 4(4):888-895.
LUO X, LIANG G J, HAN Y Y, et al. Triplet energy transfer from perovskite nanocrystals mediated by electron transfer [J]. J. Am. Chem. Soc., 2020, 142(25):11270-11278.
WU M F, CONGREVE D N, WILSON M W B, et al. Solid-state infrared-to-visible upconversion sensitized by colloidal nanocrystals [J]. Nat. Photonics, 2016, 10(1):31-34.
WU M F, JEAN J, BULOVI Ć V, et al. Interference-enhanced infrared-to-visible upconversion in solid-state thin films sensitized by colloidal nanocrystals [J]. Appl. Phys. Lett., 2017, 110(21):211101-1-4.
NIENHAUS L, WU M F, GEVA N, et al. Speed limit for triplet-exciton transfer in solid-state PbS nanocrystal-sensitized photon upconversion [J]. ACS Nano, 2017, 11(8):7848-7857.
RUAN L F, ZHANG Y. Upconversion perovskite nanocrystal heterostructures with enhanced luminescence and stability by lattice matching [J]. ACS Appl. Mater. Interfaces, 2021, 13(43):51362-51372.
ZENG M, SINGH S, HENS Z, et al. Strong upconversion emission in CsPbBr3 perovskite quantum dots through efficient BaYF5∶Yb,Ln sensitization [J]. J. Mater. Chem. C, 2019, 7:2014-2021.
DU K M, ZHANG M L, LI Y, et al. Embellishment of upconversion nanoparticles with ultrasmall perovskite quantum dots for full-color tunable,dual-modal luminescence anticounterfeiting [J]. Adv. Opt. Mater., 2021, 9(21):2100814.
RUAN L F, ZHANG Y. NIR-excitable heterostructured upconversion perovskite nanodots with improved stability [J]. Nat. Commun., 2021, 12(1):219.
ESTEBANEZ N, CORTÉS-VILLENA A, FERRERA-GONZÁLEZ J, et al. Linear coassembly of upconversion and perovskite nanoparticles:sensitized upconversion emission of perovskites by lanthanide-doped nanoparticles [J]. Adv. Funct. Mater., 2020, 30(46):2003766-1-9.
YAN C L, DADVAND A, ROSEI F, et al. Near-IR photoresponse in new up-converting CdSe/NaYF4∶Yb,Er nanoheterostructures [J]. J. Am. Chem. Soc., 2010, 132(26):8868-8869.
MEIR N, PINKAS I, ORON D. NIR-to-visible upconversion in quantum dots via a ligand induced charge transfer state [J]. RSC Adv., 2019, 9(21):12153-12161.
GE Y, ZHANG M J, WANG L, et al. Polarization-sensitive ultraviolet detection from oriented-CdSe@CdS-dot-in-rods-integrated silicon photodetector [J]. Adv. Opt. Mater., 2019, 7(18):1900330-1-7.
ZHANG M J, WANG L X, MENG L H, et al. Perovskite quantum dots embedded composite films enhancing UV response of silicon photodetectors for broadband and solar-blind light detection [J]. Adv. Opt. Mater., 2018, 6(16):1800077-1-7.
朱晓秀, 葛咏, 李建军, 等. 量子点增强硅基探测成像器件的研究进展 [J]. 中国光学, 2020, 13(1):62-74.
ZHU X X, GE Y, LI J J, et al. Research progress of quantum dot enhanced silicon-based photodetectors [J]. Chin. Opt., 2020, 13(1):62-74. (in Chinese)
GOLDSCHMIDT J C, FISCHER S. Upconversion for photovoltaics-a review of materials,devices and concepts for performance enhancement [J]. Adv. Opt. Mater., 2015, 3(4):510-535.
SELLERS D G, ZHANG J, CHEN E Y, et al. Novel nanostructures for efficient photon upconversion and high-efficiency photovoltaics [J]. Sol. Energy Mater. Sol. Cells, 2016, 155:446-453.
ZHANG F, TANG B Z. Near-infrared luminescent probes for bioimaging and biosensing [J]. Chem. Sci., 2021, 12(10):3377-3378.
LEI Z H, ZHANG F. Molecular engineering of NIR-Ⅱ fluorophores for improved biomedical detection [J]. Angew. Chem. Int. Ed., 2021, 60(30):16294-16308.
LI H, WANG X, OHULCHANSKYY T Y, et al. Lanthanide-doped near-infrared nanoparticles for biophotonics [J]. Adv. Mater., 2021, 33(6):2000678-1-17.
孟宪福, 刘艳颜, 步文博. 用于医学磁共振影像的稀土上转换发光纳米材料 [J]. 发光学报, 2018, 39(1):69-91.
MENG X F, LIU Y Y, BU W B. Rare-earth upconversion nanomaterials for medical magnetic resonance imaging [J]. Chin. J. Lumin., 2018, 39(1):69-91. (in Chinese)
于莉华, 刘永升, 陈学元. 基于稀土上转换纳米荧光探针的肿瘤标志物体外检测 [J]. 发光学报, 2018, 39(1):27-49.
YU L H, LIU Y S, CHEN X Y. Lanthanide-doped upconversion nano-bioprobes for in-vitro detection of tumor markers [J]. Chin. J. Lumin., 2018, 39(1):27-49. (in English)
QIN X, NETO A N C, LONGO R L, et al. Surface Plasmon-photon coupling in lanthanide-doped nanoparticles [J]. J. Phys. Chem. Lett., 2021, 12(5):1520-1541.
徐文, 陈旭, 宋宏伟. 稀土离子上转换发光中的局域电磁场调控 [J]. 发光学报, 2018, 39(1):1-26.
XU W, CHEN X, SONG H W. Manipulation of local electromagnetic field in upconversion luminescence of rare earth ions [J]. Chin. J. Lumin., 2018, 39(1):1-26. (in Chinese)
WU D M, GARCÍA-ETXARRI A, SALLEO A, et al. Plasmon-enhanced upconversion [J]. J. Phys. Chem. Lett., 2014, 5(22):4020-4031.
0
浏览量
1222
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构