浏览全部资源
扫码关注微信
河北大学 物理科学与技术学院,河北 保定 071002
[ "何旭(1995-),男,河北廊坊人,硕士研究生,2019年于河北大学获得学士学位,主要从事稀土掺杂发光材料的研究。E-mail: 18830285787@163.com" ]
[ "李旭(1978-),男,河北石家庄人,博士,研究员,2016年于北京交通大学获得博士学位,主要从事稀土发光材料方面的研究。E-mail: lixcn@sina.com" ]
[ "王凤和(1983-),女,河北沧州人,博士,讲师,2017年于新加坡国立大学获得博士学位,主要从事稀土发光材料方面的研究。E-mail: fenghe_wang@hotmail.com" ]
纸质出版日期:2022-03,
收稿日期:2021-12-13,
修回日期:2021-12-29,
扫 描 看 全 文
何旭, 吴亚楠, 蒋越宁, 等. 适用于近红外荧光/核磁双模成像的GdF3∶Nd3+,Yb3+@NaGdF4纳米材料[J]. 发光学报, 2022,43(3):350-358.
Xu HE, Ya-nan WU, Yue-ning JIANG, et al. GdF3∶Nd3+,Yb3+@NaGdF4 Nanomaterials for Near Infrared Fluorescence and Magnetic Resonance Dual-mode Imaging[J]. Chinese Journal of Luminescence, 2022,43(3):350-358.
何旭, 吴亚楠, 蒋越宁, 等. 适用于近红外荧光/核磁双模成像的GdF3∶Nd3+,Yb3+@NaGdF4纳米材料[J]. 发光学报, 2022,43(3):350-358. DOI: 10.37188/CJL.20210391.
Xu HE, Ya-nan WU, Yue-ning JIANG, et al. GdF3∶Nd3+,Yb3+@NaGdF4 Nanomaterials for Near Infrared Fluorescence and Magnetic Resonance Dual-mode Imaging[J]. Chinese Journal of Luminescence, 2022,43(3):350-358. DOI: 10.37188/CJL.20210391.
利用Nd
3+
与Yb
3+
之间的能量传递,设计了808 nm激发下具有近红外光致发光的GdF
3
∶Nd
3+
Yb
3+
@NaGdF
4
磁性纳米探针。通过合成参数调控,研究了反应时间和前驱物浓度对GdF
3
∶Nd
3+
Yb
3+
材料形貌的影响。GdF
3
∶Nd
3+
Yb
3+
在808 nm激发下在近红外(NIR)第一/第二窗口具有较宽的发射峰(970~1 070 nm),共掺杂体系实现了Yb
3+
和Nd
3+
双发光中心发光,有效提高了近红外区间的发光性能,同时克服了用980 nm激发的荧光成像引起生物组织过热的缺点。表面包覆NaGdF
4
惰性壳可以进一步提高GdF
3
∶Nd
3+
Yb
3+
的近红外发光强度,研究了不同厚度NaGdF
4
惰性壳对GdF
3
∶Nd
3+
Yb
3+
发光增强的影响。由于Gd
3+
具有的顺磁特性,GdF
3
∶Nd
3+
Yb
3+
@NaGdF
4
显示出顺磁性能,磁化值为0.45 A·m
2
/kg,适合作为磁共振成像(MRI)T1探针。GdF
3
∶Nd
3+
Yb
3+
@NaGdF
4
纳米颗粒在NIR荧光成像和MRI领域具有广阔的应用前景。
GdF
3
∶Nd
3+
Yb
3+
magnetic nanocomposites with near-infrared photoluminescence under 808 nm excitation were designed based on the energy transfer between Nd
3+
and Yb
3+
. The influence of synthesis parameters on the morphology of GdF
3
∶Nd
3+
Yb
3+
was discussed. The obtained GdF
3
∶Nd
3+
Yb
3+
exhibits a wide emission band(970-1 070 nm) under 808 nm excitation. The co-doping system of Nd
3+
and Yb
3+
can realize the dual emission center of Yb
3+
and Nd
3+
as the emission center. It effectively improves the luminescence performance in the near-infrared region and overcomes the disadvantage of overheating biological tissues by fluorescence imaging under 980 nm excitation. An inert shell of NaGdF
4
was grown on GdF
3
∶Nd
3+
Yb
3+
surface
which could improve the emission intensity dramatically. Meanwhile
the effect of NaGdF
4
inter shell with different thicknesses on the luminescence enhancement of GdF
3
∶Nd
3+
Yb
3+
was studied. The final products GdF
3
∶Nd
3+
Yb
3+
@NaGdF
4
are paramagnetic with magnetization 0.45 A·m
2
/kg. This indicates that GdF
3
∶Nd
3+
Yb
3+
@NaGdF
4
has broad application prospects in both the fluorescence imaging field and magnetic resonance imaging(MRI) field.
近红外能量传递磁共振成像
near-infraredenergy transfermagnetic resonance imaging
ZHANG H X, CHEN Z H, LIU X, et al. A mini-review on recent progress of new sensitizers for luminescence of lanthanide doped nanomaterials [J]. Nano Res., 2020, 13(7):1795-1809.
CHEN S, WEITEMIER A Z, ZENG X, et al. Near-infrared deep brain stimulation via upconversion nanoparticle-mediated optogenetics [J]. Science, 2018, 359(6376):679-684.
PĄZIK R, ZACHANOWICZ E, PO ŻNIAK B, et al. Non-contact Mn1-xNixFe2O4 ferrite nano-heaters for biological applications—heat energy generated by NIR irradiation [J]. RSC Adv., 2017, 7(29):18162-18171.
LI C Y, WANG Q B. Advanced NIR-Ⅱ fluorescence imaging technology for in vivo precision tumor theranostics [J]. Adv. Therap., 2019, 2(9):1900053.
FAN Y, LIU L, ZHANG F. Exploiting lanthanide-doped upconversion nanoparticles with core/shell structures [J]. Nano Today, 2019, 25:68-84.
PROFIO A E, BALCHUM O J, LAM S. Endoscopic fluorescence detection of early lung cancer [C]. Proceedings of SPIE 1426,Optical Methods for Tumor Treatment and Early Diagnosis: Mechanisms and Techniques,Los Angeles, 1991:1426.
HUANG J G, XIE C, ZHANG X D, et al. Renal-clearable molecular semiconductor for second near-infrared fluorescence imaging of kidney dysfunction [J]. Angew. Chem. Int. Ed., 2019, 58(42):15120-15127.
HAO X X, LI C Y, ZHANG Y J, et al. Programmable chemotherapy and immunotherapy against breast cancer guided by multiplexed fluorescence imaging in the second near-infrared window [J]. Adv. Mater., 2018, 30(51):1804437-1-8.
DEL ROSAL B, VILLA I, JAQUE D, et al. In vivo autofluorescence in the biological windows:the role of pigmentation [J]. J. Biophotonics, 2016, 9(10):1059-1067.
WEN Q X, ZHANG Y J, LI C Y, et al. NIR-Ⅱ fluorescent self-assembled peptide nanochain for ultrasensitive detection of peritoneal metastasis [J]. Angew. Chem. Int. Ed., 2019, 58(32):11001-11006.
BASHKATOV A N, GENINA E A, KOCHUBEY V I, et al. Optical properties of human skin,subcutaneous and mucous tissues in the wavelength range from 400 to 2 000 nm [J]. J. Phys. D: Appl. Phys., 2005, 38(15):2543-2555.
LI C Y, CHEN G C, ZHANG Y J, et al. Advanced fluorescence imaging technology in the near-infrared-Ⅱ window for biomedical applications [J]. J. Am. Chem. Soc., 2020, 142(35):14789-14804.
HU Z H, FANG C, LI B, et al. First-in-human liver-tumour surgery guided by multispectral fluorescence imaging in the visible and near-infrared-Ⅰ/Ⅱ windows [J]. Nat. Biomed. Eng., 2020, 4(3):259-271.
HU Z H, CHEN W H, TIAN J, et al. NIRF nanoprobes for cancer molecular imaging:approaching clinic [J]. Trends. Mol. Med., 2020, 26(5):469-482.
FAN Y, WANG P Y, LU Y Q, et al. Lifetime-engineered NIR-Ⅱ nanoparticles unlock multiplexed in vivo imaging [J]. Nat. Nanotechnol., 2018, 13(10):941-946.
DONG H, DU S R, ZHENG X Y, et al. Lanthanide nanoparticles:from design toward bioimaging and therapy [J]. Chem. Rev., 2015, 115(19):10725-10815.
BRENIER A. Excited-state dynamics including radiative diffusion in quasi-three-level laser crystals:application to Yb3+-doped Y3Al5O12 [J]. J. Opt. Soc. Amer. B, 2006, 23(10):2209-2216.
LI X L, JIANG M Y, LI Y B, et al. 808 nm laser-triggered NIR-Ⅱ emissive rare-earth nanoprobes for small tumor detection and blood vessel imaging [J]. Mater. Sci. Eng. C, 2019, 100:260-268.
WANG F H, BAE K, HUANG Z W, et al. Two-photon graphene quantum dot modified Gd2O3 nanocomposites as a dual-mode MRI contrast agent and cell labelling agent [J]. Nanoscale, 2018, 10(12):5642-5649.
ROBERTS J E. Lanthanum and neodymium salts of trifluoroacetic acid [J]. J. Am. Chem. Soc., 1961, 83(5):1087-1088.
MAI H X, ZHANG Y W, SI R, et al. High-quality sodium rare-earth fluoride nanocrystals:controlled synthesis and optical properties [J]. J. Am. Chem. Soc., 2006, 128(19):6426-6436.
CHATTERJEE D K, RUFAIHAH A J, ZHANG Y. Upconversion fluorescence imaging of cells and small animals using lanthanide doped nanocrystals [J]. Biomaterials, 2008, 29(7):937-943.
LI X K, YOU F T, PENG H S, et al. Synthesis and near-infrared luminescent properties of NaGdF4∶Nd3+@NaGdF4 core/shell nanocrystals with different shell thickness [J]. J. Nanosci. Nanotechnol., 2016, 16(4):3940-3944.
WANG F H, PENG E, LIU F, et al. Fluorescence-tagged amphiphilic brush copolymer encapsulated Gd2O3 core-shell nanostructures for enhanced T1 contrast effect and fluorescent imaging [J]. Nanotechnology, 2016, 27(42):425101-1-12.
WANG Y F, LIU G Y, SUN L D, et al. Nd3+-sensitized upconversion nanophosphors:efficient in vivo bioimaging probes with minimized heating effect [J]. ACS Nano, 2013, 7(8):7200-7206.
TAN M L, DEL ROSAL B, ZHANG Y Q, et al. Rare-earth-doped fluoride nanoparticles with engineered long luminescence lifetime for time-gated in vivo optical imaging in the second biological window [J]. Nanoscale, 2018, 10(37):17771-17780.
林少伟, 赵婧, 法信蒙, 等. 808 nm激发的NaYF4∶Yb/Tm/Ca@NaGdF4∶Nd/Yb上转换纳米粒子的制备及其发光性质 [J]. 发光学报, 2020, 41(11):1358-1366.
LIN S W, ZHAO J, FA X M, et al. Preparation and luminescent properties of NaYF4∶Yb/Tm/Ca@NaGdF4∶Nd/Yb up-conversion nanoparticles excited at 808 nm [J]. Chin. J. Lumin., 2020, 41(11):1358-1366. (in Chinese)
DAI Y, YANG D P, YU D P, et al. Mussel-inspired polydopamine-coated lanthanide nanoparticles for NIR-Ⅱ/CT dual imaging and photothermal therapy [J]. ACS Appl. Mater. Interfaces, 2017, 9(32):26674-26683.
SUN Z Q, HUANG H Y, ZHANG R, et al. Activatable rare earth near-infrared-Ⅱ fluorescence ratiometric nanoprobes [J]. Nano Lett., 2021, 21(15):6576-6583.
BEDNARKIEWICZ A, WAWRZYNCZYK D, NYK M, et al. Synthesis and spectral properties of colloidal Nd3+ doped NaYF4 nanocrystals [J]. Opt. Mater., 2011, 33(10):1481-1486.
CHEN G Y, OHULCHANSKYY T Y, LIU S, et al. Core/shell NaGdF4∶Nd3+/NaGdF4 nanocrystals with efficient near-infrared to near-infrared downconversion photoluminescence for bioimaging applications [J]. ACS Nano, 2012, 6(4):2969-2977.
HAN Q, SUN J C, WU H Y, et al. Enhanced up-conversion luminescence efficiency of heterogeneous hetero-phase α-NaLuF4∶Yb/Er@β-NaYF4∶Yb core-shell structure nanocrystals [J]. J. Alloys Compd., 2020, 848:156543.
0
浏览量
162
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构