浏览全部资源
扫码关注微信
1.长春理工大学 重庆研究院,重庆 401135
2.长春理工大学 高功率半导体国家重点实验室,吉林 长春 130022
[ "王嘉宾(1997-),男,吉林吉林人,硕士研究生,2019 年于长春理工大学获得学士学位,主要从事半导体外延生长的研究。E-mail: 985626845@qq.com" ]
[ "王海珠(1983-),男,吉林长春人,博士,副研究员,博士生导师,2012年于吉林大学获得博士学位,2014年清华大学博士后,主要从事半导体激光外延材料制备及应用的研究。E-mail: whz@cust.edu.cn" ]
纸质出版日期:2022-02,
收稿日期:2021-12-02,
修回日期:2021-12-20,
移动端阅览
王嘉宾, 王海珠, 刘伟超, 等. 基于MOCVD三步生长的GaAs/Si外延技术[J]. 发光学报, 2022,43(2):153-160.
JIA-BIN WANG, HAI-ZHU WANG, WEI-CHAO LIU, et al. Three-step Epitaxial Growth of GaAs on Si by MOCVD echnology. [J]. Chinese journal of luminescence, 2022, 43(2): 153-160.
王嘉宾, 王海珠, 刘伟超, 等. 基于MOCVD三步生长的GaAs/Si外延技术[J]. 发光学报, 2022,43(2):153-160. DOI: 10.37188/CJL.20210378.
JIA-BIN WANG, HAI-ZHU WANG, WEI-CHAO LIU, et al. Three-step Epitaxial Growth of GaAs on Si by MOCVD echnology. [J]. Chinese journal of luminescence, 2022, 43(2): 153-160. DOI: 10.37188/CJL.20210378.
在硅(Si)上外延生长高质量的砷化镓(GaAs)薄膜是实现硅基光源单片集成的关键因素。但是,Si材料与GaAs材料之间较大的晶格失配、热失配等问题对获得高质量的GaAs薄膜造成了严重影响。本文利用金属有机化学气相沉积(MOCVD)技术开展Si基GaAs生长研究。通过采用三步生长法,运用低温成核层、高温GaAs层与循环热退火等结合的方式,进一步降低Si基GaAs材料的表面粗糙度和穿透位错密度。并利用X射线衍射(XRD)
ω
-2
θ
扫描追踪采用不同方法生长的样品中残余应力的变化。最终,在GaAs低温成核层生长时间62 min(生长厚度约25 nm)时,采用三步生长、循环热退火等结合的方式获得GaAs(004) XRD摇摆曲线峰值半高宽(FWHM)为401″、缺陷密度为6.8×10
7
cm
-2
、5 μm×5 μm区域表面粗糙度为6.71 nm的GaAs外延材料,在材料中表现出张应力。
Epitaxial growth of high-quality gallium arsenide(GaAs) films on silicon(Si) is the key factor to realize the monolithic integration of silicon-based light sources. However
the large lattice mismatch and thermal mismatch between Si and GaAs have a serious impact on the quality of GaAs films obtained by epitaxial growth. The growth of GaAs on Si was studied by metal-organic chemical vapor deposition(MOCVD). In this paper
the three-step growth method was used to further reduce the surface roughness and threading dislocation density of GaAs on Si by combining low temperature GaAs nucleation layer
high temperature GaAs layer and thermal cycle annealing. And the changes of residual stress in samples grown by different methods were tracked by X-ray diffraction(XRD)
ω
-2
θ
scan. Finally
when the growth time of GaAs low-temperature nucleation layer was 62 min (the growth thickness was about 25 nm)
the full width at half maximum(FWHM) of GaAs epitaxial material exhibiting tensile stress with GaAs(004) rocking curve measured by XRD was 401″
threading dislocation density was 6.8×10
7
cm
-2
and surface roughness over 5 μm×5 μm scan areas of 6.71 nm was obtained by means of three-step growth and cyclic annealing.
金属有机化学气相沉积砷化镓硅异质外延
metal-organic chemical vapor depositionGaAsSiheteroepitaxy
AGRELL E, KARLSSON M, CHRAPLYVY A R, et al. Roadmap of optical communications[J]. J. Opt., 2016, 18(6):063002-1-40.
周治平, 杨丰赫, 陈睿轩, 等. 硅基光电子:微电子与光电子的交融点[J]. 微纳电子与智能制造, 2019, 1(3):4-15.
ZHOU Z P, YANG F H, CHEN R X, et al. Silicon photonics—a converging point of microelectronics and optoelectronics[J]. Micro/Nano Electron. Intell. Manuf., 2019, 1(3):4-15. (in Chinese)
ALESHKIN V Y, BAIDUS N V, DUBINOV A A, et al. Monolithically integrated InGaAs/GaAs/AlGaAs quantum well laser grown by MOCVD on exact Ge/Si(001) substrate[J]. Appl. Phys. Lett., 2016, 109(6):061111-1-5.
NORMAN J, KENNEDY M J, SELVIDGE J, et al. Electrically pumped continuous wave quantum dot lasers epitaxially grown on patterned, on-axis (001) Si[J]. Opt. Express, 2017, 25(4):3927-3934.
CHEN S M, LI W, WU J, et al. Electrically pumped continuous-wave Ⅲ-Ⅴ quantum dot lasers on silicon[J]. Nat. Photon., 2016, 10(5):307-311.
SHANG C, WAN Y T, NORMAN J C, et al. Low-threshold epitaxially grown 1.3-μm InAs quantum dot lasers on patterned (001) Si[J]. IEEE J. Sel. Top. Quant., 2019, 25(6):1-7.
黄北举, 张赞, 张赞允, 等. 硅基光电子与微电子单片集成研究进展[J]. 微纳电子与智能制造, 2019, 1(3):55-67.
HUANG B J, ZHANG Z, ZHANG Z Y, et al. Research progress on monolithic integration of silicon based optoelectronics with microelectronics[J]. Micro Nano Electron. Intell. Manuf., 2019, 1(3):55-67. (in Chinese)
HU H Y, WANG J, CHENG Z, et al. Influences of ultrathin amorphous buffer layers on GaAs/Si grown by metal-organic chemical vapor deposition[J]. Appl. Phys. A, 2018, 124(4):296-1-7.
王霆, 张建军, LIU H Y. 硅基Ⅲ-Ⅴ族量子点激光器的发展现状和前景[J]. 物理学报, 2015, 64(20):204209-1-8.
WANG T, ZHANG J J, LIU H Y. Quantum dot lasers on silicon substrate for silicon photonic integration and their prospect[J]. Acta Phys. Sinica, 2015, 64(20):204209-1-8. (in Chinese)
WANG Y F, WANG Q, JIA Z G, et al. Three-step growth of metamorphic GaAs on Si(001) by low-pressure metal organic chemical vapor deposition[J]. J. Vac. Sci. Technol. B, 2013, 31(5):051211-1-5.
刘广政, 徐波, 叶晓玲, 等. 四步法制备高质量硅基砷化镓薄膜[J]. 无机材料学报, 2016, 31(11):1263-1268.
LIUG Z, XU B, YE X L, et al. Four-step method for growing high-quality GaAs films on Si substrate by molecular beam epitaxy[J]. J. Inorg. Mater., 2016, 31(11):1263-1268. (in English)
EGAWA T, HASEGAWA Y, JIMBO T, et al. Effects of dislocation and stress on characteristics of GaAs-based laser grown on Si by metalorganic chemical vapor deposition[J]. Jpn. J. Appl. Phys., 1992, 31(3R):791-797.
SOGA T, HATTORI S, SAKAI S, et al. Epitaxial growth and material properties of GaAs on Si grown by MOCVD[J]. J. Cryst. Growth, 1986, 77(1-3):498-502.
EL-MASRY N A, TARN J C, KARAM N H. Interactions of dislocations in GaAs grown on Si substrates with InGaAs-aAsP strained layered superlattices[J]. J. Appl. Phys., 1988, 64(7):3672-3677.
SHARAN S, NARAYAN J, FAN J C C. Dislocation density reduction in GaAs epilayers on Si using strained layer superlattices[J]. MRS Online Proc. Lib., 1989, 160(1):375-381.
HU H Y, WANG J, HE Y R, et al. Modified dislocation filter method:toward growth of GaAs on Si by metal organic chemical vapor deposition[J]. Appl. Phys. A, 2016, 122(6):588-1-7.
HSU C W, CHEN Y F, SU Y K. Nanoepitaxy of GaAs on a Si (001) substrate using a round-hole nanopatterned SiO2 mask[J]. Nanotechnology, 2012, 23(49):495306-1-6.
LI Q, NG K W, LAU K M. Growing antiphase-domain-free GaAs thin films out of highly ordered planar nanowire arrays on exact (001) silicon[J]. Appl. Phys. Lett., 2015, 106(7):072105-1-4.
GROENERT M E, LEITZ C W, PITERA A J, et al. Monolithic integration of room-temperature cw GaAs/AlGaAs lasers on Si substrates via relaxed graded GeSi buffer layers[J]. J. Appl. Phys., 2003, 93(1):362-367.
BALLABIO A, BIETTI S, SCACCABAROZZI A, et al. GaAs epilayers grown on patterned (001) silicon substrates via suspended Ge layers[J]. Sci. Rep., 2019, 9(1):17529-1-8.
BOLKHOVITYANOV Y B, PCHELYAKOV O P. GaAs epitaxy on Si substrates:modern status of research and engineering[J]. Phys. Usp., 2008, 51(5):437-456.
AYERS J E. The Measurement of threading dislocation densities in semiconductor crystals by X-ray diffraction[J]. J. Cryst. Growth, 1994, 135(1-2):71-77.
FARRELL S, RAO M V, BRILL G, et al. Effect of cycle annealing parameters on dislocation density reduction for HgCdTe on Si[J]. J. Electron. Mater., 2011, 40(8):1727-1732.
汤英文, 熊传兵, 王佳斌. 硅衬底GaN基LED薄膜芯片的应力调制[J]. 发光学报, 2016, 37(8):979-983.
TANG Y W, XIONG C B, WANG J B. Stress modulation of GaN based LED thin film chip on Silicon substrate[J]. Chin. J. Lumin., 2016, 37(8):979-983. (in Chinese)
ZAMIR S, MEYLER B, SALZMAN J. Thermal microcrack distribution control in GaN layers on Si substrates by lateral confined epitaxy[J]. Appl. Phys. Lett., 2001, 78(3):288-290.
0
浏览量
764
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构