浏览全部资源
扫码关注微信
. 长春理工大学 高功率半导体激光国家重点实验室,吉林 长春 130022
[ "王芝浩(1997-),男,山东潍坊人,硕士研究生,2019年于济南大学获得学士学位,主要从事高功率半导体激光器的研究。E-mail: wangzh_1997@163.com" ]
[ "薄报学(1964-),男,河南淇县人,博士,教授,2002年于吉林大学获得博士学位,主要从事高功率半导体激光器技术与应用的研究。E-mail: bbx@cust.edu.cn" ]
纸质出版日期:2022-02,
收稿日期:2021-11-26,
修回日期:2021-12-19,
扫 描 看 全 文
王芝浩, 王警辉, 刘帅男, 等. 数值模拟980 nm锥形半导体激光器输出特性[J]. 发光学报, 2022,43(2):275-284.
Zhi-hao WANG, Jing-hui WANG, Shuai-nan LIU, et al. Numerical Simulation on Output Characteristics of 980 nm Tapered Semiconductor Lasers[J]. Chinese Journal of Luminescence, 2022,43(2):275-284.
王芝浩, 王警辉, 刘帅男, 等. 数值模拟980 nm锥形半导体激光器输出特性[J]. 发光学报, 2022,43(2):275-284. DOI: 10.37188/CJL.20210376.
Zhi-hao WANG, Jing-hui WANG, Shuai-nan LIU, et al. Numerical Simulation on Output Characteristics of 980 nm Tapered Semiconductor Lasers[J]. Chinese Journal of Luminescence, 2022,43(2):275-284. DOI: 10.37188/CJL.20210376.
具有高功率及高亮度激光特性的锥形半导体激光器在激光加工、自由空间通信、医疗等领域具有广泛的应用前景。本文基于广角差分光束传播法(WA-FD-BPM),对980 nm锥形半导体激光器进行了仿真模拟,详细分析了不同结构参数(脊形区刻蚀深度、锥形角度、不同脊形区/锥形区长度比、锥形区刻蚀深度、前腔面反射率)对器件光束质量和
P-I-V
特性的影响。分析认为,锥形区波导的几何损耗是导致器件斜率效率降低的主要因素,光泵浦效应是影响锥形激光器光束质量变差的重要因素,可通过降低器件的前腔面反射率来改善光束质量。研究结果可为锥形激光器的性能优化提供参考。
Tapered semiconductor lasers with high power and high brightness characteristics have been extensively used in many fields such as laser processing
free space communications
and medical
etc
. A simulation on 980 nm tapered semiconductor lasers has been done based on the wide-angle differential beam propagation method(WA-FD-BPM) in this work. The effects of structural parameters(such as ridge etching depth
taper angle
different ridge/taper length ratio
taper etching depth
front cavity reflectance) on the beam quality and
P-I-V
characteristics of the device are analyzed in detail. The analysis shows that the geometric loss of the tapered waveguide is the main factor leading to the decrease of the slope efficiency of the device
and the optical pumping effect is an important factor affecting the deterioration of the beam quality. The beam quality can be improved by reducing the reflectivity of the front cavity surface of the device. The results in this paper can provide a certain theoretical reference for the design and analysis of tapered lasers.
锥形半导体激光器广角差分光束传播法光束质量光场分布
tapered semiconductor laserwide-angle differential beam propagationbeam qualityoptical field distribution
陈良惠, 杨国文, 刘育衔. 半导体激光器研究进展[J]. 中国激光, 2020, 47(5):0500001-1-19.
CHEN L H, YANG G W, LIU Y X. Development of semiconductor lasers[J]. Chin. J. Lasers, 2020, 47(5):0500001-1-19. (in Chinese)
刘国军, 薄报学, 曲轶, 等. 高功率半导体激光器技术发展与研究[J]. 红外与激光工程, 2007, 36(S1):272-274.
LIUG J, BO B X, QU Y, et al. High power semiconductor lasers[J]. Infrared Laser Eng., 2007, 36(S1):272-274. (in Chinese)
王立军, 宁永强, 秦莉, 等. 大功率半导体激光器研究进展[J]. 发光学报, 2015, 36(1):1-19.
WANG L J, NING Y Q, QIN L, et al. Development of high power diode laser[J]. Chin. J. Lumin., 2015, 36(1):1-19. (in Chinese)
胡雪莹, 董海亮, 贾志刚, 等. GaAs基980 nm高功率半导体激光器的研究进展[J]. 人工晶体学报, 2021, 50(2):381-390.
HU X Y, DONG H L, JIA Z G, et al. Research progress of GaAs based 980 nm high power semiconductor lasers[J]. J. Synthet. Cryst., 2021, 50(2):381-390. (in Chinese)
BENDELLI G, KOMORI K, ARAI S. Gain saturation and propagation characteristics of index-guided tapered-waveguide traveling-wave semiconductor laser amplifiers(TTW-SLAs)[J]. IEEE J. Quant. Electr., 1992, 28(2):447-458.
WALPOLE J N, KINTZER E S, CHINN S R, et al. High-power strained-layer InGaAs/AlGaAs tapered traveling wave amplifier[J]. Appl. Phys. Lett., 1992, 61(7):740.
WALPOLE J N. Semiconductor amplifiers and lasers with tapered gain regions[J]. Opt. Quant. Electr., 1996, 28(6):623-645
O’BRIEN S, SCHOENFELDER A, LANG R J. 5-W CW diffraction-limited InGaAs broad-area flared amplifier at 970 nm[J]. Photon. Technol. Lett. IEEE, 1997, 9(9):1217-1219.
KINTZER E S, WALPOLE J N, CHINN S R, et al. High-power strained-layer tapered traveling wave amplifier[C]. Optical Fiber Communication Conference, San Jose, California, 1992: 44.
KINTZER E S, WALPOLE J N, CHINN S R, et al. High-power, strained-layer amplifiers and lasers with tapered gain regions[J]. IEEE Photon. Technol. Lett., 1993, 5(6):605-608.
SUJECKI S, BORRUEL L, WYKES J, et al. Nonlinear properties of tapered laser cavities[J]. IEEE J. Select. Top. Quant. Electr., 2003, 9(3):823-834.
BORRUEL L, SUJECKI S, MORENO P, et al. Quasi-3-D simulation of high-brightness tapered lasers[J]. IEEE J. Quant. Electr., 2004, 40(5):463-472.
HADLEY R G. Multistep method for wide-angle beam propagation[J]. Opt. Lett., 1992, 17(24):1743.
SELBERHERR S. Analysis and Simulation of Semiconductor Devices[M]. Wien: Springer-Verlag, 1984.
KOCH T B, DAVIES J B, WICKRAMASINGHE D. Finite element/finite difference propagation algorithm for integrated optical device[J]. Electr. Lett., 1989, 25(8):514-516.
孙胜明. 976 nm锥形半导体激光器技术研究[D]. 长春: 长春理工大学, 2018.
SUN S M. Study on 976 nm Tapered Semiconductor Laser Technology[D]. Changchun: Changchun University of Science and Technology, 2018. (in Chinese)
DELEPINE S, GERARD F, PINQUIER A, et al. How to launch 1 W into single-mode fiber from a single 1.48-μm flared resonator[J]. IEEE J. Select. Top. Quant. Electr., 2001, 7(2):111-123.
HELAL M A, NYIRENDA-KAUNGA S N, BULL S, et al. Beam quality degradation processes in tapered lasers and DBR tapered lasers[C]. 2017 IEEE High Power Diode Lasers and Systems Conference (HPD), Coventry, UK, 2017: 25-26.
袁庆贺, 井红旗, 刘素平, 等. 导波模式对锥形半导体激光器输出特性的影响[J]. 中国激光, 2021, 48(9):0901001-1-9.
YUAN Q H, JING H Q, LIU S P, et al. Influence of guided wave mode on output characteristics of tapered diode laser[J]. Chin. J. Lasers, 2021, 48(9):0901001-1-9. (in Chinese)
0
浏览量
164
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构