浏览全部资源
扫码关注微信
1.吉林化工学院 分析测试中心,吉林 吉林 132022
2.吉林大学 化学学院,吉林 长春 130012
3.东北电力大学 能源与动力工程学院,吉林 吉林 132012
[ "陈杰(1990-),女,吉林通化人,博士,副教授,2018年于吉林大学获得博士学位,主要从事稀土发光材料的制备与应用的研究。E-mail: jiechendr@163.com" ]
纸质出版日期:2022-02,
收稿日期:2021-11-24,
修回日期:2021-12-08,
扫 描 看 全 文
陈杰, 高忆欣, 王超, 等. 六角柱形NaErF4和NaErF4@NaYF4核壳微粒制备及多色上转换荧光调控性能[J]. 发光学报, 2022,43(2):209-217.
Jie CHEN, Yi-xin GAO, Chao WANG, et al. Preparation and Polychromatic Upconversion Luminescence of Hexagonal NaErF4 and NaErF4@NaYF4 Core-shell Particles[J]. Chinese Journal of Luminescence, 2022,43(2):209-217.
陈杰, 高忆欣, 王超, 等. 六角柱形NaErF4和NaErF4@NaYF4核壳微粒制备及多色上转换荧光调控性能[J]. 发光学报, 2022,43(2):209-217. DOI: 10.37188/CJL.20210373.
Jie CHEN, Yi-xin GAO, Chao WANG, et al. Preparation and Polychromatic Upconversion Luminescence of Hexagonal NaErF4 and NaErF4@NaYF4 Core-shell Particles[J]. Chinese Journal of Luminescence, 2022,43(2):209-217. DOI: 10.37188/CJL.20210373.
采用简单的水热法合成了六角柱形NaErF
4
和NaErF
4
@NaYF
4
核壳上转换发光材料,利用扫描电镜(SEM)、X射线粉末衍射(XRD)和荧光光谱(PL)等表征对材料的形貌、结构和上转换发光性能进行了研究。结果表明,纯NaErF
4
样品为六角柱形,边长和厚度均为1 μm左右,样品表面光滑。随着NaYF
4
壳层的包覆,六角相NaErF
4
周围出现了大量的立方相NaYF
4
纳米颗粒,得到了NaErF
4
@NaYF
4
核壳结构。荧光光谱表明,通过在六角柱形NaErF
4
表面包覆NaYF
4
壳层,可以有效增强上转换发光强度,其中,位于527
543
663 nm处的3个发射峰分别对应于Er
3+
的
2
H
11/2
→
4
I
15/2
、
4
S
3/2
→
4
I
15/2
和
4
F
9/2
→
4
I
15/2
能级跃迁。随着壳层中Y∶F比例的增加,立方相NaYF
4
的晶体衍射峰逐渐增强;同时,对应的NaErF
4
@NaYF
4
样品发射光谱中红绿比(
R/G
)逐渐增大,发光颜色也从绿色、经黄绿色逐渐向黄色过渡,实现了多色发光。
Hexagonal NaErF
4
and NaErF
4
@NaYF
4
core-shell upconversion luminescent materials were synthesized by simple hydrothermal method. The morphology
structure and upconversion luminescence properties of the obtained materials were studied by scanning electron microscopy(SEM)
X-ray powder diffraction(XRD) and fluorescence spectroscopy(PL). The results show that the pure NaErF
4
sample has hexagonal column morphology with smooth surface
and the side length and thickness are both 1 μm. With the coating of NaYF
4
shell
a large number of cubic NaYF
4
nanoparticles appeared around hexagonal NaYF
4
particles
and the NaErF
4
@NaYF
4
core-shell materials were obtained. The luminescence spectra show that the upconversion luminescence intensity can be effectively enhanced by coating NaYF
4
shell on the surface of hexagonal NaErF
4
. The three emission peaks at 527
543
663 nm correspond to
2
H
11/2
→
4
I
15/2
4
S
3/2
→
4
I
15/2
and
4
F
9/2
→
4
I
15/2
energy level transitions of Er
3+
respectively. Meanwhile
with the increase of the molar ratio of Y∶F in the shell of NaErF
4
@NaYF
4
sample
the crystal diffraction peak of cubic NaYF
4
increases gradually
moreover
the red green ratio(
R/G
) gradually increases in the emission spectrum of the sample
and the luminescence color gradually transits from green to yellow
realizing multi-color luminescence.
上转换荧光NaErF4@NaYF4;红绿比六角柱
upconversion luminescenceNaErF4@NaYF4red green ratiohexagonal column
XU F Y, ZHAO Y M, HU M, et al. Lanthanide-doped core-shell nanoparticles as a multimodality platform for imaging and photodynamic therapy[J]. Chem. Commun., 2018, 54(68):9525-9528.
PANIKAR S S, RAMÍREZ-GARCÍA G, VALLEJO-CARDONA A A, et al. Novel anti-HER2 peptide-conjugated theranostic nanoliposomes combining NaYF4∶Yb,Er nanoparticles for NIR-activated bioimaging and chemo-photodynamic therapy against breast cancer[J]. Nanoscale, 2019, 11(43):20598-20613.
XU F, SUN Y, GAO H P, et al. High-performance perovskite solar cells based on NaCsWO3@NaYF4@NaYF4∶Yb, Er upconversion nanoparticles[J]. ACS Appl. Mater. Interfaces, 2021, 13(2):2674-2684.
YANG P, SUN X F, WANG S H, et al. Synthesis of Cit-NaYF4∶Yb,Tm@phenolic formaldehyde resin (PFR)@Au composites as an optical sensor for the detection of Cu(Ⅱ) ions[J]. Opt. Mater., 2020, 109:110326.
KOWALIK P, KAMIŃSKA I, FRONC K, et al. The ROS-generating photosensitizer-free NaYF4∶Yb,Tm@SiO2 upconverting nanoparticles for photodynamic therapy application[J]. Nanotechnology, 2021, 32(47):475101-1-9.
李子娟, 安雪, 牛昊, 等. 高温溶剂热分解法合成NaYF4∶Yb3+,Er3+纳米粒子及其光谱特性[J]. 发光学报, 2020, 41(9):1128-1136.
LI Z J, AN X, NIU H, et al. Synthesis and spectral properties of NaYF4∶Yb3+,Er3+ nanoparticles via thermolysis method[J]. Chin. J. Lumin., 2020, 41(9):1128-1136. (in Chinese)
SUN L Y, GAO R Y, PAN T T, et al. Concentration-regulated photon upconversion and quenching in NaYF4∶Yb3+,Er3+ nanocrystals:nonexponentiality revisited[J]. Nanoscale, 2019, 11(39):18150-18158.
SMARA Z, CHEROURA Y, BOYER D, et al. Energy transfer and luminescent properties of Eu3+,Tb3+,Eu3+-Yb3+ and Tb3+-Yb3+ doped α-NaYF4 nanophosphors prepared by coprecipitation route[J]. Opt. Mater., 2020, 104:109932-1-11.
BASAVAPOORNIMA C, LINGANNA K, KESAVULU C R, et al. Spectroscopic and pump power dependent upconversion studies of Er3+-doped lead phosphate glasses for photonic applications[J]. J. Alloys Compd., 2017, 699:959-968.
TANG H, XU Y, CHENG X H. Effect of Cr3+ and alkaline-earth metal ions co-doping on the enhancement of upconversion luminescence in β-NaYF4∶Yb3+/Er3+ microparticles[J]. Mater. Sci. Eng. B, 2020, 261:114658-1-8.
HOMANN C, KRUKEWITT L, FRENZEL F, et al. NaYF4∶Yb,Er/NaYF4 core/shell nanocrystals with high upconversion luminescence quantum yield[J]. Angew. Chem. Int. Ed., 2018, 57(28):8765-8769.
相国涛, 刘小桐, 夏清, 等. β-NaYF4∶Yb3+/Er3+@β-NaYF4∶Yb3+的上转换发光特性[J]. 发光学报, 2020, 41(6):679-683.
XIANG G T, LIU X T, XIA Q, et al. Upconversion luminescence properties of β-NaYF4∶Yb3+/Er3+@β-NaYF4∶Yb3+[J]. Chin. J. Lumin., 2020, 41(6):679-683. (in Chinese)
CHEN Q S, XIE X J, HUANG B L, et al. Confining excitation energy in Er3+-sensitized upconversion nanocrystals through Tm3+-mediated transient energy trapping[J]. Angew. Chem. Int. Ed., 2017, 56(26):7605-7609.
ZUO J, LI Q Q, XUE B, et al. Employing shells to eliminate concentration quenching in photonic upconversion nanostructure[J]. Nanoscale, 2017, 9(23):7941-7946.
JOHNSON N J J, HE S, DIAO S, et al. Direct evidence for coupled surface and concentration quenching dynamics in lanthanide-doped nanocrystals[J]. J. Am. Chem. Soc., 2017, 139(8):3275-3282.
LU K L, Yi Y X, XU L, et al. Temperature-independent lifetime and thermometer operated in a biological window of upconverting NaErF4 nanocrystals[J]. Nanomaterials, 2020, 10(1):24-1-12.
LIU Y F, GUO C L, PAN G C, et al. Highly efficient upconversion single red emission of hollow cubic α-NaErF4 nanoparticles by Mn/Yb heavy doping[J]. J. Lumin., 2020, 228:117637.
ZHANG Y Y, MEI L F, LIU H K, et al. Spectroscopic and pump power dependent color-tunable upconversion studies of Yb3+/Er3+ -doped Sr2ScF7[J]. J. Lumin., 2017, 192:385-387.
BORODZIUK A, BARANOWSKI M, WOJCIECHOWSKI T, et al. Excitation efficiency determines the upconversion luminescence intensity of β-NaYF4∶Er3+,Yb3+ nanoparticles in magnetic fields up to 70 T[J]. Nanoscale, 2020, 12(39):20300-20307.
PAN T T, SUN L Y, GAO R Y, et al. Efficient modulation of upconversion luminescence in NaErF4-based core-shell nanocrystals[J]. New J. Chem., 2020, 44(22):9153-9157.
JU D D, GAO X L, ZHANG S C, et al. Temperature-dependent upconversion luminescence multicolor tuning and temperature sensing of multifunctional β-NaYF4∶Yb/Er@β-NaYF4∶Yb/Tm microcrystals[J]. CrystEngComm, 2021, 23(21):3892-3900.
HE E J, YU J J, WANG C, et al. Upconversion luminescence quenching mechanism of single Au nanoparticles decorated NaYF4∶Yb3+,Er3+ hexagonal disk[J]. Mater. Res. Bull., 2020, 121:110613-1-9.
ZHANG J, CHEN J J, ZHANG Y N, et al. Yb3+/Tm3+ and Yb3+/Ho3+ doped NaY9(SiO4)6O2 phosphors:upconversion luminescence processes, temperature-dependent emission spectra and optical temperature-sensing properties[J]. J. Alloys Compd., 2021, 860:158473-1-8.
AN J X, ZHANG S, LIU R W, et al. Luminescent properties of Dy3+/Eu3+ doped fluorescent glass for white LED based on oxyfluoride matrix[J]. J. Rare Earths, 2021, 39(1):26-32.
0
浏览量
95
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构