浏览全部资源
扫码关注微信
天津大学 天津纳米颗粒与纳米系统国际研究中心,天津 300072
[ "张翼鹏(1995-),男,河北辛集人,硕士研究生,2017年于天津科技大学获得学士学位,主要从事二维材料器件制备的研究。E-mail: pz199572@163.com" ]
[ "马雷(1976-),男,新疆石河子人,博士,教授,2010年于南京大学获得博士学位,主要从事低温凝聚态及电子器件物理的研究。E-mail: lei.ma@tju.edu.cn" ]
纸质出版日期:2022-04-01,
收稿日期:2021-12-20,
修回日期:2022-01-09,
扫 描 看 全 文
张翼鹏, 王雪, 纪佩璇, 等. 不同响应机制下的石墨烯基光电探测器研究进展[J]. 发光学报, 2022,43(4):552-575.
Yi-peng ZHANG, Xue WANG, Pei-xuan JI, et al. Research Progress of Graphene Based Photodetectors Under Different Response Mechanisms[J]. Chinese Journal of Luminescence, 2022,43(4):552-575.
张翼鹏, 王雪, 纪佩璇, 等. 不同响应机制下的石墨烯基光电探测器研究进展[J]. 发光学报, 2022,43(4):552-575. DOI: 10.37188/CJL.20210359.
Yi-peng ZHANG, Xue WANG, Pei-xuan JI, et al. Research Progress of Graphene Based Photodetectors Under Different Response Mechanisms[J]. Chinese Journal of Luminescence, 2022,43(4):552-575. DOI: 10.37188/CJL.20210359.
光电探测器因可将光信号转换为电信号而被广泛地应用于视频成像、光通信、生物医学成像和运动检测等方面。但由于所采用的传统光电探测器材料对其性能带来的局限性和日益增长的新需求之间的矛盾,使得寻找新的材料迫在眉睫。近年来新兴的二维材料为制备更高性能的探测器提供了全新的材料研究平台,其中石墨烯以其独特的电学、光学与热学特性成为下一代高性能光子学最有希望的候选材料之一。本文系统地综述了不同光响应机制下石墨烯基光电探测器研究现状,并在此基础上对当下不同石墨烯基光电器件发展前景进行了细致的讨论和展望。
Photodetectors are widely used in video imaging
optical communication
biomedical imaging and motion detection since their ability of converting optical signals to electrical signals. The limited performances of traditional photodetectors are mainly due to the intrinsic properties of materials which they are made of
therefore
it is pressingly needing to find new materials for developing new photodetectors with superior performances. In recent years
the emerging two-dimensional materials have provided a whole category of novel material platforms for fabricating higher-performance detectors. Among them
graphene is one of the most promising candidate material for the next generation high-performance photonics benefiting its unique electrical
optical and thermal properties. In this manuscript
we have systematically summarized the research progress and status on the graphene based photodetectors according to their light response mechanisms
and followed by a concise future prospect on different graphene photoelectric devices.
石墨烯光电探测器响应机制研究进展
graphenephotodetectorresponse mechanismresearch progress
GOYKHMAN I, DESIATOV B, KHURGIN J, et al. Waveguide based compact silicon Schottky photodetector with enhanced responsivity in the telecom spectral band [J]. Opt. Express, 2012, 20(27):28594-28602.
VIVIEN L, OSMOND J, FÉDÉLI J M, et al. 42 GHz p.i.n Germanium photodetector integrated in a silicon-on-insulator waveguide [J]. Opt. Express, 2009, 17(8):6252-6257.
LIANG T, MILLER D A B, OKYAY A K, et al. C-shaped nanoaperture-enhanced germanium photodetector [J]. Opt. Lett., 2006, 31(10):1519-1521.
NUESE C J. Ⅲ-V alloys for optoelectronic applications [J]. J. Electron. Mater., 1977, 6(3):253-293.
REN A B, YUAN L M, XU H, et al. Recent progress of Ⅲ-V quantum dot infrared photodetectors on silicon [J]. J. Mater. Chem. C, 2019, 7(46):14441-14453.
KIM C, YOO T J, CHANG K E, et al. Highly responsive near-infrared photodetector with low dark current using graphene/germanium Schottky junction with Al2O3 interfacial layer [J]. Nanophotonics, 2021, 10(5):1573-1579.
李亮, 皮乐晶, 李会巧, 等. 二维半导体光电探测器:发展、机遇和挑战 [J]. 科学通报, 2017, 62(27):3134-3153.
LI L, PI L J, LI H Q, et al. Photodetectors based on two-dimensional semiconductors∶progress,opportunity and challenge [J]. Chin. Sci. Bull., 2017, 62(27):3134-3153. (in Chinese)
黎晓华, 林钰恒, 刘新科. 基于二维材料架构的先进电子和光电子器件 [J]. 广东化工, 2021, 48(9):133-135.
LI X H, LIN Y H, LIU X K. Advanced electronic and optoelectronic devices based on two dimensional material architecture [J]. Guangdong Chem. Ind., 2021, 48(9):133-135. (in Chinese)
赵建红, 宋立媛, 姬荣斌, 等. 石墨烯在光电探测领域的研究进展 [J]. 红外技术, 2014, 36(8):609-616.
ZHAO J H, SONG L Y, JI R B, et al. Research progress of graphene in the field of photoelectric detection [J]. Infrared Technol., 2014, 36(8):609-616. (in Chinese)
PANDIT B, SCHUBERT E F, CHO J. Dual-functional ultraviolet photodetector with graphene electrodes on AlGaN/GaN heterostructure [J]. Sci. Rep., 2020, 10(1):22059-1-7.
MUELLER T, XIA F, FREITAG M, et al. The role of contacts in graphene transistors:a scanning photocurrent study [J]. Phys. Rev. B, 2009, 79(24):245430-1-6.
FURCHI M, URICH A, POSPISCHIL A, et al. Microcavity-integrated graphene photodetector [J]. Nano Lett., 2012, 12(6):2773-2777.
MUELLER T, XIA F N, AVOURIS P. Graphene photodetectors for high-speed optical communications [J]. Nat. Photonics, 2010, 4(5):297-301.
YAO Y, SHANKAR R, RAUTER P, et al. High-responsivity mid-infrared graphene detectors with antenna-enhanced photocarrier generation and collection [J]. Nano Lett., 2014, 14(7):3749-3754.
YAN J, KIM M H, ELLE J A, et al. Dual-gated bilayer graphene hot-electron bolometer [J]. Nat. Nanotechnol., 2012, 7(7):472-478.
杨花, 曹阳, 贺军辉, 等. 石墨烯红外光电探测器研究进展 [J]. 激光与光电子学进展, 2015, 52(11):110003-1-13.
YANG H, CAO Y, HE J H, et al. Research progress in graphene-based infrared photodetectors [J]. Laser Optoelectron. Prog., 2015, 52(11):110003-1-13. (in Chinese)
CAI X H, SUSHKOV A B, SUESS R J, et al. Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene [J]. Nat. Nanotechnol., 2014, 9(10):814-819.
BRIDA D, TOMADIN A, MANZONI C, et al. Ultrafast collinear scattering and carrier multiplication in graphene [J]. Nat. Commun., 2013, 4:1987-1-9.
李龙飞, 吕颖杰, 胡加杨, 等. 基于石墨烯的光电探测器研究进展 [J]. 微电子学, 2020, 50(3):389-395.
LI L F, LÜ Y J, HU J Y, et al. Research progress of photoelectric detector based on graphene [J]. Microelectronics, 2020, 50(3):389-395. (in Chinese)
PETERS E C, LEE E J H, BURGHARD M, et al. Gate dependent photocurrents at a graphene p-n junction [J]. Appl. Phys. Lett., 2010, 97(19):193102-1-3.
RAO G, FREITAG M, CHIU H Y, et al. Raman and photocurrent imaging of electrical stress-induced p-n junctions in graphene [J]. ACS Nano, 2011, 5(7):5848-5854.
SUN Z H, CHANG H X. Graphene and graphene-like two-dimensional materials in photodetection:mechanisms and methodology [J]. ACS Nano, 2014, 8(5):4133-4156.
GAN X T, SHIUE R J, GAO Y D, et al. Chip-integrated ultrafast graphene photodetector with high responsivity [J]. Nat. Photonics, 2013, 7(11):883-887.
NAIR R R, BLAKE P, GRIGORENKO A N, et al. Fine structure constant defines visual transparency of graphene [J]. Science, 2008, 320(5881):1308.
KIM R, PEREBEINOS V, AVOURIS P. Relaxation of optically excited carriers in graphene [J]. Phys. Rev. B, 2011, 84(7):075449-1-5.
MALIC E, WINZER T, BOBKIN E, et al. Microscopic theory of absorption and ultrafast many-particle kinetics in graphene [J]. Phys. Rev. B, 2011, 84(20):205406-1-14.
CHULER S, SCHALL D, NEUMAIER D, et al. Controlled generation of a p-n junction in a waveguide integrated graphene photodetector [J]. Nano Lett., 2016, 16(11):7107-7112.
FREITAG M, LOW T, AVOURIS P. Increased responsivity of suspended graphene photodetectors [J]. Nano Lett., 2013, 13(4):1644-1648.
KONSTANTATOS G, BADIOLI M, GAUDREAU L, et al. Hybrid graphene-quantum dot phototransistors with ultrahigh gain [J]. Nat. Nanotechnol., 2012, 7(6):363-368.
SUN Z H, LIU Z K, LI J H, et al. Infrared photodetectors based on CVD-grown graphene and PbS quantum dots with ultrahigh responsivity [J]. Adv. Mater., 2012, 24(43):5878-5883.
尹伟红, 韩勤, 杨晓红. 基于石墨烯的半导体光电器件研究进展 [J]. 物理学报, 2012, 61(24):248502-1-12.
YINW H, HAN Q, YANG X H. The progress of semiconductor photoelectric devices based on graphene [J]. Acta Phys. Sinica, 2012, 61(24):248502-1-12. (in Chinese)
GRAMOTNEV D K, BOZHEVOLNYI S I. Plasmonics beyond the diffraction limit [J]. Nat. Photonics, 2010, 4(2):83-91.
FREITAG M, LOW T, MARTIN-MORENO L, et al. Substrate-sensitive mid-infrared photoresponse in graphene [J]. ACS Nano, 2014, 8(8):8350-8356.
FREITAG M, LOW T, ZHU W J, et al. Photocurrent in graphene harnessed by tunable intrinsic plasmons [J]. Nat. Commun. 2013, 4:1951-1-8.
BADIOLI M, WOESSNER A, TIELROOIJ K J, et al. Phonon-mediated mid-infrared photoresponse of graphene [J]. Nano Lett., 2014, 14(11):6374-6381.
DYAKONOV M, SHUR M. Detection,mixing,and frequency multiplication of terahertz radiation by two-dimensional electronic fluid [J]. IEEE Trans. Electron Devices, 1996, 43(3):380-387.
YU X C, DONG Z G, LIU Y P, et al. High performance,visible to mid-infrared photodetector based on graphene nanoribbons passivated with HfO2 [J]. Nanoscale, 2016, 8(1):327-332.
GUO Q S, YU R W, LI C, et al. Efficient electrical detection of mid-infrared graphene plasmons at room temperature [J]. Nat. Mater., 2018, 17(11):986-992.
OGAWA S, KIMATA M. Wavelength-or polarization-selective thermal infrared detectors for multi-color or polarimetric imaging using plasmonics and metamaterials [J]. Materials, 2017, 10(5):493-1-16.
OGAWA S, OKADA K, FUKUSHIMA N, et al. Wavelength selective uncooled infrared sensor by plasmonics [J]. Appl. Phys. Lett., 2012, 100(2):021111-1-4.
OGAWA S, TAKAGAWA Y, KIMATA M. Broadband polarization-selective uncooled infrared sensors using tapered plasmonic micrograting absorbers [J]. Sens. Actuators A Phys., 2018, 269:563-568.
ECHTERMEYER T J, BRITNELL L, JASNOS P K, et al. Strong plasmonic enhancement of photovoltage in graphene [J]. Nat. Commun., 2011, 2:458-1-5.
CAKMAKYAPAN S, LU P K, NAVABI A, et al. Gold-patched graphene nano-stripes for high-responsivity and ultrafast photodetection from the visible to infrared regime [J]. Light Sci. Appl., 2018, 7:20-1-9.
SHIMATANI M, OGAWA S, FUKUSHIMA S, et al. Multispectral graphene infrared photodetectors using plasmonic metasurfaces [C]. Proceedings of SPIE 11002, Infrared Technology and Applications XLV, Baltimore, Maryland, United States, 2019.
OGAWA S, KIMATA M. Metal-insulator-metal-based plasmonic metamaterial absorbers at visible and infrared wavelengths:a review [J]. Materials, 2018, 11(3):458.
FANG Z Y, LIU Z, WANG Y M, et al. Graphene-antenna sandwich photodetector [J]. Nano Lett., 2012, 12(7):3808-3813.
MUENCH J E, RUOCCO A, GIAMBRA M A, et al. Waveguide-integrated,plasmonic enhanced graphene photodetectors [J]. Nano Lett., 2019, 19(11):7632-7644.
WU J. Enhancement of absorption in graphene strips with cascaded grating structures [J]. IEEE Photonics Technol. Lett., 2016, 28(12):1332-1335.
SHI S F, XU X D, RALPH D C, et al. Plasmon resonance in individual nanogap electrodes studied using graphene nanoconstrictions as photodetectors [J]. Nano Lett., 2011, 11(4):1814-1818.
GOOSSENS S, NAVICKAITE G, MONASTERIO C, et al. Broadband image sensor array based on graphene-CMOS integration [J]. Nat. Photonics, 2017, 11(6):366-371.
ROGALSKI A. Graphene-based materials in the infrared and terahertz detector families:a tutorial [J]. Adv. Opt. Photonics, 2019, 11(2):314-379.
ROGALSKI A, KOPYTKO M, MARTYNIUK P. Two-dimensional infrared and terahertz detectors:outlook and status [J]. Appl. Phys. Rev., 2019, 6(2):021316.
FANG Z Y, WANG Y M, LIU Z, et al. Plasmon-induced doping of graphene [J]. ACS Nano, 2012, 6(11):10222-10228.
SPIRITO D, COQUILLAT D, DE BONIS S L, et al. High performance bilayer-graphene terahertz detectors [J]. Appl. Phys. Lett., 2014, 104(6):061111-1-5.
BANDURIN D A, SVINTSOV D, GAYDUCHENKO I, et al. Resonant terahertz detection using graphene plasmons [J]. Nat. Commun., 2018, 9(1):5392-1-8.
PATANIYA P M, SUMESH C K. WS2 nanosheet/graphene heterostructures for paper-based flexible photodetectors [J]. ACS Appl. Nano Mater., 2020, 3(7):6935-6944.
LIU N, TIAN H, SCHWARTZ G, et al. Large-area,transparent,and flexible infrared photodetector fabricated using P-N junctions formed by N-doping chemical vapor deposition grown graphene [J]. Nano Lett., 2014, 14(7):3702-3708.
WANG J, HAN J Y, CHEN X Q, et al. Design strategies for two-dimensional material photodetectors to enhance device performance [J]. InfoMat, 2019, 1(1):33-53.
WANG J G, MU X J, SUN M T, et al. Optoelectronic properties and applications of graphene-based hybrid nanomaterials and van der Waals heterostructures [J]. Appl. Mater. Today, 2019, 16:1-20.
LIU F Z, KAR S. Quantum carrier reinvestment-induced ultrahigh and broadband photocurrent responses in graphene-silicon junctions [J]. ACS Nano, 2014, 8(10):10270-10279.
KIM M, YAN J, SUESS R, et al. Photothermal response in dual-gated bilayer graphene [J]. Phys Rev Lett, 2013, 110(24):1-5.
FREITAG M, LOW T, XIA F N, et al. Photoconductivity of biased graphene [J]. Nat. Photonics, 2013, 7(1):53-59.
FATIMY A E, HAN P Z, QUIRK N, et al. Effect of defect-induced cooling on graphene hot-electron bolometers [J]. Carbon, 2019, 154:497-502.
LEMME M C, KOPPENS F H L, FALK A L, et al. Gate-activated photoresponse in a graphene p-n junction [J]. Nano Lett., 2011, 11(10):4134-4137.
王嘉瑶, 史焕聪, 蒋林华, 等. 类石墨烯二维材料及光电器件应用研究进展 [J]. 功能材料, 2019, 50(10):10063-10073.
WANG J Y, SHI H C, JIANG L H, et al. Progress in application of graphene-like two-dimensional materials and photoelectric devices [J]. J. Funct. Mater., 2019, 50(10):10063-10073. (in Chinese)
TOMADIN A, BRIDA D, CERULLO G, et al. Nonequilibrium dynamics of photoexcited electrons in graphene:collinear scattering,Auger processes,and the impact of screening [J]. Phys. Rev. B, 2013, 88(3):035430-1-18.
WINZER T, KNORR A, MALIC E. Carrier multiplication in graphene [J]. Nano Lett., 2010, 10(12):4839-4843.
KLEKACHEV A V, NOURBAKHSH A, ASSELBERGHS I, et al. Graphene transistors and photodetectors [J]. The Electrochem. Soc. Interface, 2013, 22(1):63.
WANG X, CHENG Z Z, XU K, et al. High-responsivity graphene/silicon-heterostructure waveguide photodetectors [J]. Nat. Photonics, 2013, 7(11):888-891.
LI H, LI X M, PARK J H, et al. Restoring the photovoltaic effect in graphene-based van der Waals heterojunctions towards self-powered high-detectivity photodetectors [J]. Nano Energy, 2019, 57:214-221.
SUN Y M, GAO W, LI X P, et al. Anti-ambipolar behavior and photovoltaic effect in p-MoTe2/n-InSe heterojunctions [J]. J. Mater. Chem. C, 2021, 9(32):10372-10380.
FENG B, PAN X H, LIU T, et al. A broadband photoelectronic detector in a silicon nanopillar array with high detectivity enhanced by a monolayer graphene [J]. Nano Lett., 2021, 21(13):5655-5662.
VORA H, KUMARAVADIVEL P, NIELSEN B, et al. Bolometric response in graphene based superconducting tunnel junctions [J]. Appl. Phys. Lett., 2012, 100(15):153507-1-5.
ENGEL M, STEINER M, LOMBARDO A, et al. Light-matter interaction in a microcavity-controlled graphene transistor [J]. Nat. Commun., 2012, 3(1):906-1-6.
WANG Y B, YIN W H, HAN Q, et al. Bolometric effect in a waveguide-integrated graphene photodetector [J]. Chin. Phys. B, 2016, 25(11):118103-1-4.
JONSON M, MAHAN G D. Mott's formula for the thermopower and the Wiedemann-Franz law [J]. Phys. Rev. B, 1980, 21(10):4223-4229.
LU X W, SUN L, JIANG P, et al. Progress of photodetectors based on the photothermoelectric effect [J]. Adv. Mater., 2019, 31(50):1902044-1-26.
ROY K, PADMANABHAN M, GOSWAMI S, et al. Graphene-MoS2 hybrid structures for multifunctional photoresponsive memory devices [J]. Nat. Nanotechnol., 2013, 8(11):826-830.
JUNG M, RICKHAUS P, ZIHLMANN S, et al. Microwave photodetection in an ultraclean suspended bilayer graphene p-n junction [J]. Nano Lett., 2016, 16(11):6988-6993.
GABOR N M, SONG J C W, MA Q, et al. Hot carrier-assisted intrinsic photoresponse in graphene [J]. Science, 2011, 334(6056):648-652.
HERRING P K, HSU A L, GABOR N M, et al. Photoresponse of an electrically tunable ambipolar graphene infrared thermocouple [J]. Nano Lett., 2014, 14(2):901-907.
HSU A L, HERRING P K, GABOR N M, et al. Graphene-based thermopile for thermal imaging applications [J]. Nano Lett., 2015, 15(11):7211-7216.
GOSCINIAK J, RASRAS M, KHURGIN J B. Ultrafast plasmonic graphene photodetector based on the channel photothermoelectric effect [J]. ACS Photonics, 2020, 7(2):488-498.
OGAWA S, FUKUSHIMA S, SHIMATANI M. Graphene plasmonics in sensor applications:a review [J]. Sensors, 2020, 20(12):3563-1-21.
BUSCEMA M, ISLAND J O, GROENENDIJK D J, et al. Photocurrent generation with two-dimensional van der Waals semiconductors [J]. Chem. Soc. Rev., 2015, 44(11):3691-3718.
DRAIN C M, CHRISTENSEN B, MAUZERALL D. Photogating of ionic currents across a lipid bilayer [J]. Proc. Natl. Acad. Sci. USA, 1989, 86(18):6959-6962.
HOU J Y, FONASH S J. Quantum efficiencies greater than unity:a computer study of a photogating effect in amorphous silicon p-i-n devices [J]. Appl. Phys. Lett., 1992, 61(2):186-188.
MARCUS M S, SIMMONS J M, CASTELLINI O M, et al. Photo-gating carbon nanotube transistors [J]. J. Appl. Phys., 2006, 100(8):084306-1-6.
HOJUN S, KYOUNGAH C, JUNGGWON Y, et al. Photogating effects of HgTe nanoparticles on a single ZnO nanowire [J]. Solid State Sci., 2010, 12(8):1328-1331.
FURCHI M M, POLYUSHKIN D K, POSPISCHIL A T, et al. Mechanisms of photoconductivity in atomically thin MoS2 [J]. Nano Lett., 2014, 14(11):6165-6170.
GUO N, HU W D, LIAO L, et al. Anomalous and highly efficient InAs nanowire phototransistors based on majority carrier transport at room temperature [J]. Adv. Mater., 2014, 26(48):8203-8209.
LIU Y D, WANG F Q, WANG X M, et al. Planar carbon nanotube-graphene hybrid films for high-performance broadband photodetectors [J]. Nat. Commun., 2015, 6:8589-1-7.
ADINOLFI V, SARGENT E H. Photovoltage field-effect transistors [J]. Nature, 2017, 542(7641):324-327.
FANG H H, HU W D. Photogating in low dimensional photodetectors [J]. Adv. Sci., 2017, 4(12):1700323-1-17.
徐春燕, 南海燕, 肖少庆, 等. 基于二维半导体材料光电器件的研究进展 [J]. 电子与封装, 2021, 21(3):030401-1-15.
XU C Y, NAN H Y, XIAO S Q, et al. Research progress of photoelectric devices based on 2D semiconductor materials [J]. Electron. Packag., 2021, 21(3):030401-1-15. (in Chinese)
贺平, 袁方龙, 王子飞, 等. 基于碳量子点的光电器件应用新进展 [J]. 物理化学学报, 2018, 34(11):1250-1263.
HE P, YUAN F L, WANG Z F, et al. Growing carbon quantum dots for optoelectronic devices [J]. Acta Phys. -Chim. Sinica, 2018, 34(11):1250-1263. (in Chinese)
TSANG W T. Chapter 2 molecular beam epitaxy for Ⅲ-V compound semiconductors [J]. Semicond. Semimetals, 1985, 22:95-207.
HWANG D K, LEE Y T, LEE H S, et al. Ultrasensitive PbS quantum-dot-sensitized InGaZnO hybrid photoinverter for near-infrared detection and imaging with high photogain [J]. NPG Asia Mater., 2016, 8(1):e233.
HU C, DONG D D, YANG X K, et al. Synergistic effect of hybrid PbS quantum Dots/2D-WSe2 toward high performance and broadband phototransistors [J]. Adv. Funct. Mater., 2017, 27(2):1603605-1-8.
ZHANG W J, CHUU C P, HUANG J K, et al. Ultrahigh-gain photodetectors based on atomically thin graphene-MoS2 heterostructures [J]. Sci. Rep., 2014, 4:3826-1-8.
LEE Y, KWON J, HWANG E, et al. Graphene photodetectors:high-performance perovskite-graphene hybrid photodetector [J]. Adv. Mater., 2015, 27(1):188.
HONG Q, YUAN J, XU Z Q, et al. Broadband photodetectors based on graphene-Bi2Te3 heterostructure [J]. ACS Nano, 2015, 9(2):1886-1894.
LIU C H, CHANG Y C, NORRIS T B, et al. Graphene photodetectors with ultra-broadband and high responsivity at room temperature [J]. Nat. Nanotechnol., 2014, 9(4):273-278.
YANG Q, SHEN J, JIANG H, et al. Dual-color photodetection based on speed-differentiated photoresponse with high photogain [J]. ACS Photonics, 2021, 8(4):1027-1033.
GUO X T, WANG W H, NAN H Y, et al. High-performance graphene photodetector using interfacial gating [J]. Optica, 2016, 3(10):1066-1070.
LIU Y P, XIA Q L, HE J, et al. Direct observation of high photoresponsivity in pure graphene photodetectors [J]. Nanoscale Res. Lett., 2017, 12(1):93-1-8.
FUKUSHIMA S, SHIMATANI M, OKUDA S, et al. Low dark current and high-responsivity graphene mid-infrared photodetectors using amplification of injected photo-carriers by photo-gating [J]. Opt. Lett., 2019, 44(10):2598-2601.
KONSTANTATOS G, SARGENT E H. Nanostructured materials for photon detection [J]. Nat. Nanotechnol., 2010, 5(6):391-400.
GIOVANNETTI G, KHOMYAKOV P A, BROCKS G, et al. Doping graphene with metal contacts [J]. Phys. Rev. Lett., 2008, 101(2):026803-1-4.
LEE E J H, BALASUBRAMANIAN K, WEITZ R T, et al. Contact and edge effects in graphene devices [J]. Nat. Nanotechnol., 2008, 3(8):486-490.
LEE H, HEO K, PARK J, et al. Graphene-nanowire hybrid structures for high-performance photoconductive devices [J]. J. Mater. Chem., 2012, 22(17):8372-8376.
GORECKI J, APOSTOLOPOULOS V, OU J Y, et al. Optical gating of graphene on photoconductive Fe∶LiNbO3 [J]. ACS Nano, 2018, 12(6):5940-5945.
LI Y Q, ZHANG D, LIN R C, et al. Graphene interdigital electrodes for improving sensitivity in a Ga2O3∶Zn deep-ultraviolet photoconductive detector [J]. ACS Appl. Mater. Interfaces, 2019, 11(1):1013-1020.
GRIGORENKO A N, POLINI M, NOVOSELOV K S. Graphene plasmonics [J]. Nat. Photonics, 2012, 6(11):749-758.
HWANG E H, DAS S S. Dielectric function,screening,and plasmons in two-dimensional graphene [J]. Phys. Rev. B, 2007, 75(20):205418-1-9.
JABLAN M, BULJAN H, SOLJAČIĆ M. Plasmonics in graphene at infrared frequencies [J]. Phys. Rev. B, 2009, 80(24):245435-1-7.
JABLAN M, SOLJAČIĆM , BULJAN H. Unconventional plasmon-phonon coupling in graphene [J]. Phys. Rev. B, 2011, 83(16):161409-1-4.
FEI Z, ANDREEV G O, BAO W Z, et al. Infrared nanoscopy of dirac plasmons at the graphene-SiO2 interface [J]. Nano Lett., 2011, 11(11):4701-4705.
EMADI R, SAFIAN R, NEZHAD A Z. Transmitting and detecting THz pulses using graphene and metals-based photoconductive antennas [J]. J. Opt. Soc. Am. B, 2018, 35(1):113-121.
NISSIYAH G J, MADHAN M G. A narrow spectrum terahertz emitter based on graphene photoconductive antenna [J]. Plasmonics, 2019, 14(6):2003-2011.
GRILLO A, GIUBILEO F, IEMMO L, et al. Space charge limited current and photoconductive effect in few-layer MoS2 [J]. J. Phys.:Conf. Ser., 2019, 1226:012013-1-6.
WENG W Y, CHANG S J, HSU C L, et al. A ZnO-nanowire phototransistor prepared on glass substrates [J]. ACS Appl. Mater. Interfaces, 2011, 3(2):162-166.
ZHANG A, KIM H, CHENG J, et al. Ultrahigh responsivity visible and infrared detection using silicon nanowire phototransistors [J]. Nano Lett., 2010, 10(6):2117-2120.
RADISAVLJEVIC B, RADENOVIC A, BRIVIO J, et al. Single-layer MoS2 transistors [J]. Nat. Nanotechnol., 2011, 6(3):147-150.
BUTLER S Z, HOLLEN S M, CAO L Y, et al. Progress,challenges,and opportunities in two-dimensional materials beyond graphene [J]. ACS Nano, 2013, 7(4):2898-2926.
ZHANG X D, XIE Y. Recent advances in free-standing two-dimensional crystals with atomic thickness:design,assembly and transfer strategies [J]. Chem. Soc. Rev., 2013, 42(21):8187-8199.
CHOI W, CHO M Y, KONAR A, et al. High-detectivity multilayer MoS2 phototransistors with spectral response from ultraviolet to infrared [J]. Adv. Mater., 2012, 24(43):5832-5836.
HU P A, WEN Z Z, WANG L F, et al. Synthesis of few-layer GaSe nanosheets for high performance photodetectors [J]. ACS Nano, 2012, 6(7):5988-5994.
BRITNELL L, RIBEIRO R M, ECKMANN A, et al. Strong light-matter interactions in heterostructures of atomically thin films [J]. Science, 2013, 340(6138):1311-1314.
CHANG H X, WU H K. Graphene-based nanocomposites∶preparation,functionalization,and energy and environmental applications [J]. Energy Environ. Sci., 2013, 6(12):3483-3507.
GEIM A K, GRIGORIEVA I V. Van der Waals heterostructures [J]. Nature, 2013, 499(7459):419-425.
WANG Q H, KALANTAR-ZADEH K, KIS A, et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides [J]. Nat. Nanotechnol., 2012, 7(11):699-712.
DU X, SKACHKO I, BARKER A, et al. Approaching ballistic transport in suspended graphene [J]. Nat. Nanotechnol., 2008, 3(8):491-495.
BRITNELL L, GORBACHEV R V, JALIL R, et al. Field-effect tunneling transistor based on vertical graphene heterostructures [J]. Science, 2012, 335(6071):947-950.
BUNCH J S, VAN DER ZANDE A M, VERBRIDGE S S, et al. Electromechanical resonators from graphene sheets [J]. Science, 2007, 315(5811):490-493.
CHEN D, FENG H B, LI J H. Graphene oxide∶preparation,functionalization,and electrochemical applications [J]. Chem. Rev., 2012, 112(11):6027-6053.
PUMERA M. Graphene-based nanomaterials and their electrochemistry [J]. Chem. Soc. Rev., 2010, 39(11):4146-4157.
CHEN D, TANG L H, LI J H. Graphene-based materials in electrochemistry [J]. Chem. Soc. Rev., 2010, 39(8):3157-3180.
LIU Y X, DONG X C, CHEN P. Biological and chemical sensors based on graphene materials [J]. Chem. Soc. Rev., 2012, 41(6):2283-2307.
SHI X T, CHANG H X, CHEN S, et al. Regulating cellular behavior on few-layer reduced graphene oxide films with well-controlled reduction states [J]. Adv. Funct. Mater., 2012, 22(4):751-759.
YANG K, FENG L Z, SHI X Z, et al. Nano-graphene in biomedicine:theranostic applications [J]. Chem. Soc. Rev., 2013, 42(2):530-547.
0
浏览量
354
下载量
4
CSCD
关联资源
相关文章
相关作者
相关机构