浏览全部资源
扫码关注微信
1.宁波大学 高等技术研究院,浙江 宁波 315211
2.宁波海洋研究院,浙江 宁波 315832
3.浙江师范大学 物理系,浙江 金华 321004
[ "赵鹏(1996-),男,安徽安庆人,硕士研究生,2019年于合肥城市学院获得学士学位,主要从事稀土离子掺杂氟氧化物微晶玻璃中红外发光机理的研究。E-mail: zhaopengcom@163.com" ]
[ "刘雪云(1987-),女,内蒙古集宁人,博士,助理研究员,2016年于华南理工大学获得博士学位,主要从事稀土/过渡金属离子掺杂微晶玻璃发光调控的研究。E-mail: liuxueyun@nbu.edu.cn" ]
[ "郭海(1980-),男,江西吉水人,博士,教授,2005年于中国科学技术大学获得博士学位,主要从事新型稀土光学功能材料的研究。E-mail: ghh@zjnu.cn" ]
纸质出版日期:2022-02,
收稿日期:2021-11-05,
修回日期:2021-11-17,
扫 描 看 全 文
赵鹏, 叶重阳, 于曼, 等. KYb3F10∶Er3+纳米复合微晶玻璃制备与中红外发光特性[J]. 发光学报, 2022,43(2):174-181.
Peng ZHAO, Chong-yang YE, Man YU, et al. Elaboration and Mid-infrared Emission of KYb3F10∶Er3+ Nanocrystals Embedded in Glass Ceramics[J]. Chinese Journal of Luminescence, 2022,43(2):174-181.
赵鹏, 叶重阳, 于曼, 等. KYb3F10∶Er3+纳米复合微晶玻璃制备与中红外发光特性[J]. 发光学报, 2022,43(2):174-181. DOI: 10.37188/CJL.20210349.
Peng ZHAO, Chong-yang YE, Man YU, et al. Elaboration and Mid-infrared Emission of KYb3F10∶Er3+ Nanocrystals Embedded in Glass Ceramics[J]. Chinese Journal of Luminescence, 2022,43(2):174-181. DOI: 10.37188/CJL.20210349.
由于在军事和民生领域重要的应用潜力,~3 μm激光光源的开发一直以来受到了极大关注。传统中红外激光玻璃因其较高的声子能量会极大削弱发光离子的辐射跃迁几率,导致无法获得有效激光输出。因此,寻找高效且稳定的中红外~3 μm激光增益材料具有重要价值和研究意义。本文报道了在氟硅酸盐玻璃中SiO
2
-ZnF
2
-KF-YbF
3
-ErF
3
原位析出KYb
3
F
10
∶Er
3+
纳米晶,获得的微晶玻璃样品可保持80%以上的透过率。利用X射线衍射仪(XRD)和透射电子显微镜(TEM)表征了玻璃中纳米晶体种类和元素分布。在980 nm激光二极管(LD)激发下,热处理后的样品中Er
3+
位于2.7 μm处的发射带强度获得极大增强(相比于未经热处理的样品增强了约19倍),进一步结合吸收光谱和稳态光谱结果对其发光增强机理进行了解释。研究结果可为开发~3 μm激光增益材料提供相关数据和研究思路。
Mid-infrared lasers operating at around 3 μm have been paid much attention due to their significant potential at civil and military field. Traditional mid-infrared laser glass matrix presents high phonon energy
which causes the radiative transition probability of luminescent ions being greatly weakened
and thus leads to the inability to obtain effective laser output. Therefore
it is of great value to explore efficient and stable gain materials for 3 μm laser. In this paper
we report the
in-situ
precipitation of KYb
3
F
10
∶Er
3+
nanocrystals from SiO
2
-ZnF
2
-KF-YbF
3
-ErF
3
fluorosilicate glass matrix. The obtained glass ceramic can maintain more than 80% transmittance. The nanocrystal species and elemental distribution in the glass were characterized by X-ray diffractometry(XRD) and transmission electron microscopy(TEM) technology. Under 980 nm laser diode(LD) excitation
the mid-infrared emission at 2.7 μm of Er
3+
for the heat-treated sample is greatly enhanced
which is about 19 times stronger than that of the precursor sample. The related mechanism for the luminescence enhancement is further explained by the results of absorption spectra and steady state fluorescence spectra. The present results may provide reference data and research ideas for the development of ~3 μm laser gain materials.
微晶玻璃氟化物纳米晶铒离子中红外荧光
glass ceramicsfluoride nanocrystalsEr3+ ionsmid-infrared emission
LI Y C, LI Y Y, CAI M Z, et al. Enhanced tunable mid-infrared emissions by controlling rare earth ion energy transfer processes in multifunctional multiphase solids[J]. J. Eur. Ceram. Soc., 2021, 41(12):5981-5989.
REN J, LU X S, LIN C G, et al. Luminescent ion-doped transparent glass ceramics for mid-infrared light sources [invited][J]. Opt. Express, 2020, 28(15):21522-21548.
JACKSON S D. Towards high-power mid-infrared emission from a fibre laser[J]. Nat. Photonics, 2012, 6(7):423-431.
QIN Z P, HAI T, XIE G Q, et al. Black phosphorus Q-switched and mode-locked mid-infrared Er∶ZBLAN fiber laser at 3.5 μm wavelength[J]. Opt. Express, 2018, 26(7):8224-8231.
WANG C Z, TIAN Y, GAO X Y, et al. Investigation of broadband mid-infrared emission and quantitative analysis of Dy-Er energy transfer in tellurite glasses under different excitations[J]. Opt. Express, 2017, 25(23):29512-29525.
HUANG F F, HU L L, CHEN D P. Observation of 2.8 μm emission from diode-pumped Dy3+-doped fluoroaluminate glasses modified by TeO2[J]. Ceram. Int., 2014, 40(8):12869-12873.
RAGIN T, ZMOJDA J, KOCHANOWICZ M, et al. Enhanced mid-infrared 2.7 μm luminescence in low hydroxide bismuth-germanate glass and optical fiber co-doped with Er3+/Yb3+ ions[J]. J. Non-Cryst. Solids, 2017, 457:169-174.
KANG S L, FANG Z J, HUANG X J, et al. Precisely controllable fabrication of Er3+-doped glass ceramic fibers:novel mid-infrared fiber laser materials[J]. J. Mater. Chem. C, 2017, 5(18):4549-4556.
CHEN Y Z, HE Y, ZHANG Q L, et al. Growth, spectroscopic, diode-pumped mid-infrared laser properties of Er∶GSAG crystal[J]. J. Alloys Compd., 2020, 814:152267.
张振, 苏良碧. 掺Er3+晶体近3 μm中红外激光研究进展[J]. 人工晶体学报, 2020, 49(8):1361-1368.
ZHANG Z, SU L B. Research progress of near 3 μm mid-infrared laser based on Er3+ doped single crystals[J]. J. Synth. Cryst., 2020, 49(8):1361-1368. (in Chinese)
MAJEWSKI M R, WOODWARD R I, CARREÉ J Y, et al. Emission beyond 4 μm and mid-infrared lasing in a dysprosium-doped indium fluoride (InF3) fiber[J]. Opt. Lett., 2018, 43(8):1926-1929.
李成植, 姚传飞, 王顺宾, 等. 应用于2.1 μm激光的Tm3+/Ho3+共掺氟碲酸盐微结构光纤研究[J]. 发光学报, 2016, 37(1):74-80.
LI C Z, YAO C F, WANG S B, et al. Tm3+/Ho3+ co-doped fluorotellurite microstructure fiber for 2.1 μm lasing[J]. Chin. J. Lumin., 2016, 37(1):74-80. (in Chinese)
ZHAO S L, XU S Q, JIA G H, et al. Er3+/Yb3+ codoped oxyfluoride borosilicate glass ceramic containing NaYF4 nanocrystals for amorphous silicon solar cells[J]. Mater. Lett., 2011, 65(15-16):2407-2409.
XU X H, ZHANG W F, YANG D C, et al. Phonon-assisted population inversion in lanthanide-doped upconversion Ba2LaF7 nanocrystals in glass-ceramics[J]. Adv. Mater., 2016, 28(36):8045-8050.
LIU C, HEO J. Electron energy loss spectroscopy analysis on the preferential incorporation of Er3+ ions into fluoride nanocrystals in oxyfluoride glass-ceramics[J]. J. Am. Ceram. Soc., 2012, 95(7):2100-2102.
WAN Z Y, CHEN D Q, ZHOU Y, et al. Eu3+ and Er3+ doped NaLu1-xYbxF4(x=0-1) solid-solution self-crystallization nano-glass-ceramics:microstructure and optical spectroscopy[J]. J. Eur. Ceram. Soc., 2015, 35(13):3673-3679.
CHEN D Q, LIU S, XU W, et al. Yb3+/Ln3+/Cr3+(Ln= Er,Ho) doped transparent glass ceramics:crystallization,Ln3+ sensitized Cr3+ upconversion emission and multi-modal temperature sensing[J]. J. Mater. Chem. C, 2017, 5(45):11769-11780.
CAO J K, LI X M, WANG Z X, et al. Optical thermometry based on up-conversion luminescence behavior of self-crystallized K3YF6∶Er3+ glass ceramics[J]. Sens. Actuators B:Chem., 2016, 224:507-513.
FANG Z J, LI J F, LONG Y, et al. High-efficiency luminescence in optical glass via the controllable crystallization of KYb3F10 nanocrystals depending on the dopants[J]. Opt. Lett., 2020, 45(11):3030-3033.
ZHAO Z Y, AI B, LIU C, et al. Er3+ ions-doped germano-gallate oxyfluoride glass-ceramics containing BaF2 nanocrystals[J]. J. Am. Ceram. Soc., 2015, 98(7):2117-2121.
CAO J K, GUO H, HU F F, et al. Instant precipitation of KMgF3∶Ni2+ nanocrystals with broad emission (1.3-2.2 μm) for potential combustion gas sensors[J]. J. Am. Ceram. Soc., 2018, 101(9):3890-3899.
FAN J T, YUAN X Q, LI R H, et al. Intense photoluminescence at 2.7 μm in transparent Er3+∶CaF2-fluorophosphate glass microcomposite[J]. Opt. Lett., 2011, 36(22):4347-4349.
WEI T, TIAN Y, TIAN C, et al. 2.7 μm emissions in Er3+∶NaYF4 embedded aluminosilicate glass ceramics[J]. Ceram. Int., 2016, 42(1):1332-1338.
0
浏览量
181
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构