浏览全部资源
扫码关注微信
. 山东大学 晶体材料国家重点实验室,山东 济南 250100
[ "张娜(1994-),女,山东济宁人,博士研究生,2017年于山东建筑大学获得学士学位,主要从事单晶光纤的生长表征与稀土掺杂光谱性能的研究。E-mail: sduzhangna@163.com" ]
[ "李阳(1990-),女,山东泰安人,博士,副研究员,2018年于山东大学晶体材料研究所获得博士学位,主要从事人工晶体材料的生长与性能的研究。E-mail: yangli@sdu.edu.cn" ]
[ "尹延如(1988-),女,山东济南人,博士,实验师,硕士生导师,2017年于山东大学晶体材料研究所获得博士学位,主要从事功能晶体材料的设计与生长的研究。E-mail: yyr@sdu.edu.cn" ]
纸质出版日期:2022-02,
收稿日期:2021-11-04,
修回日期:2021-11-22,
移动端阅览
张娜, 李阳, 尹延如, 等. Dy3+掺杂Lu2O3 和Y2O3 单晶光纤下转换荧光测温性能[J]. 发光学报, 2022,43(2):182-191.
NA ZHANG, YANG LI, YAN-RU YIN, et al. Down-conversion Luminescence Performance of Dy3+ Doped Lu2O3 and Y2O3 Single Crystal Fibers for Temperature Sensing. [J]. Chinese journal of luminescence, 2022, 43(2): 182-191.
张娜, 李阳, 尹延如, 等. Dy3+掺杂Lu2O3 和Y2O3 单晶光纤下转换荧光测温性能[J]. 发光学报, 2022,43(2):182-191. DOI: 10.37188/CJL.20210345.
NA ZHANG, YANG LI, YAN-RU YIN, et al. Down-conversion Luminescence Performance of Dy3+ Doped Lu2O3 and Y2O3 Single Crystal Fibers for Temperature Sensing. [J]. Chinese journal of luminescence, 2022, 43(2): 182-191. DOI: 10.37188/CJL.20210345.
稀土倍半氧化物单晶光纤材料凭借超高的熔点(~2 400 ℃)、稳定的物化性能以及灵活的结构被认为是极具潜力的高温传感介质。本文采用激光加热基座(LHPG)法,成功生长了透明无开裂Dy
3+
离子掺杂的倍半氧化物单晶光纤Lu
2
O
3
和Y
2
O
3
。依据Dy
3+
离子的
4
I
15/2
和
4
F
9/2
能级为一对热耦合能级对(TCLs),测试得到了430~520 nm波长范围内的下转换荧光光谱。荧光强度比(FIR)结果显示,晶体在298~673 K温度范围内的荧光强度具有良好的温度相关性。其中Dy∶Lu
2
O
3
在该范围内的最大相对灵敏度和绝对灵敏度分别为0.97%·K
-1
(315 K)和1.62×10
-4
K
-1
(673 K),展现出更为优异的温度传感性能。
Rare earth sesquioxide single crystal fibers(SCFs) are considered to be potential high-temperature sensing media due to their ultra-high melting point(~2 400 ℃)
stable physical and chemical properties and flexible structure. The transparent and crack-free Dy
3+
doped Lu
2
O
3
and Y
2
O
3
single crystal fibers(SCFs) were successfully grown by laser heated pedestal growth(LHPG) method. According to the
4
I
15/2
and
4
F
9/2
energy levels of Dy
3+
ion as a pair of thermally coupled energy levels(TCLs)
the down-conversion luminescence in the wavelength range of 430-520 nm was obtained. The fluorescence intensity ratio(FIR) measurement technique shows that the Dy
3+
doped Lu
2
O
3
and Y
2
O
3
crystals have a good temperature dependence in the temperature range of 298-673 K. The maximum relative sensitivity and absolute sensitivity of Dy∶Lu
2
O
3
in this range are 0.97%·K
-1
(315 K) and 1.62×10
-4
K
-1
(673 K)
respectively
showing more excellent temperature sensing performance.
激光加热基座法倍半氧化物单晶光纤下转换荧光荧光强度比温度探测
laser heated pedestal growth(LHPG) methodsesquioxide single crystal fibers(SCFs)down-conversion luminescencefluorescence intensity ratio(FIR)temperature sensing
ZHANG Y B, PICKRELL G R, QI B, et al. Single-crystal sapphire-based optical high-temperature sensor for harsh environments[J]. Opt. Eng., 2004, 43(1):157-164.
CHEN J, PENG X D, XIE W D, et al. Influence of high dose γ irradiation on the calibration characteristics of type K mineral-insulated metal-sheathed thermocouples[J]. J. Alloys Compd., 2017, 696:1046-1052.
LAURIE M, MAGALLON D, REMPE J, et al. Ultrasonic high-temperature sensors:past experiments and prospects for future use[J]. Int. J. Thermophys., 2010, 31(8-9):1417-1427.
LIANG H J, YANG F B, YANG L, et al. Research and implementation of a 1 800 ℃ sapphire ultrasonic thermometer[J]. J. Sens., 2017, 2017:9710763-1-7.
WANG T, ZHANG J, YANG L, et al. Antioxidation and high-resolution ultrasonic temperature sensor based on Cr3+∶MgAl2O4 single crystal fiber[J]. Cryst. Growth Des., 2020, 20(10):6763-6768.
XU S Y, WANG Z H, GUI L J. Contact mode thermal sensors for ultrahigh-temperature region of 2 000-3 500 K[J]. Rare Met., 2019, 38(8):713-720.
WANG T, WANG H Y, ZHANG J, et al. Design and directional growth of (Mg1-xZnx)(Al1-yCry)2O4 single-crystal fibers for high-sensitivity and high-temperature sensing based on lattice doping engineering and acoustic anisotropy[J]. Adv. Funct. Mater., 2021, 31(42):2103224-1-15.
郑凯丰. 航空发动机涡轮叶片辐射测温算法及系统设计研究[D]. 长春: 中国科学院长春光学精密机械与物理研究所, 2021.
ZHENG K F. Algorithm and System Design of Aeroengine Turbine Blade Radiation Temperature Measurement[D]. Changchun: Changchun Institute of Optics, Fine Mechanicsand Physics, Chinese Academy of Sciences, 2021. (in Chinese)
AN N, YE L H, BAO R J, et al. Up-conversion luminescence characteristics and temperature sensing of Y2O3∶Ho3+/Yb3+ single crystal fiber[J]. J. Lumin., 2019, 215:116657.
LIU Y, BAI G X, PAN E, et al. Upconversion fluorescence property of Er3+/Yb3+ codoped lanthanum titanate microcrystals for optical thermometry[J]. J. Alloys Compd., 2020, 822:153449.
余露. Yb3+/Tm3+共掺杂YAG、Y2O3 单晶光纤上转换荧光温度传感技术研究[D]. 杭州: 浙江大学, 2018.
YU L. Study on Yb3+/Tm3+ Codoped YAG or Y2O3 Single Crystal Fiber Upconversion Fluorescence Temperature Sensing Technology[D]. Hangzhou: Zhejiang University, 2018. (in Chinese)
田力. 超声导波谐振测温仪设计[D]. 太原: 中北大学, 2021.
TIAN L. Design of Ultrasonic Guided Wave Resonant Thermometer[D]. Taiyuan: North University of China, 2021. (in Chinese)
洪广言. 稀土发光材料的研究进展[J]. 人工晶体学报, 2015, 44(10):2641-2651.
HONG G Y. Research progress of rare earth luminescent materials[J]. J. Synth. Cryst., 2015, 44(10):2641-2651. (in Chinese)
CAO Z M, ZHOU S S, JIANG G C, et al. Temperature dependent luminescence of Dy3+ doped BaYF5 nanoparticles for optical thermometry[J]. Curr. Appl. Phys., 2014, 14(8):1067-1071.
CAI J J, WEI X T, HU F F, et al. Up-conversion luminescence and optical thermometry properties of transparent glass ceramics containing CaF2∶Yb3+/Er3+nanocrystals[J]. Ceram. Int., 2016, 42(12):13990-13995.
CHEN G R, LEI R S, WANG H P, et al. Temperature-dependent emission color and temperature sensing behavior in Tm3+/Yb3+∶Y2O3 nanoparticles[J]. Opt. Mater., 2018, 77:233-239.
LI C R, LI S F, DONG B, et al. Significant temperature effects on up-conversion emissions of Nd3+∶Er3+∶Yb3+co-doped borosilicate glass and its thermometric application[J]. Sens. Actuators B:Chem., 2008, 134(1):313-316.
LU P, LALAM N, BADAR M, et al. Distributed optical fiber sensing:review and perspective[J]. Appl. Phys. Rev., 2019, 6(4):041302-1-35.
ZHANG G Q, MOLOKEEV M S, MA Q C, et al. Structural analysis and optical temperature sensing performance of Eu3+-doped Ba3In(PO4)3[J]. CrystEngComm, 2020, 22(35):5809-5817.
ZHAO Y, WANG X S, ZHANG Y, et al. Optical temperature sensing of up-conversion luminescent materials:fundamentals and progress[J]. J. Alloys Compd., 2020, 817:152691.
ZHOU A H, SONG F, SONG F F, et al. Tunable red-to-green emission ratio and temperature sensing properties of NaLuF4∶Ho3+/Yb3+ microcrystals by doping with Ce3+ ions[J]. CrystEngComm, 2020, 22(41):6831-6837.
张立振, 王子豪, 黄娇, 等. 高长径比Eu3+掺杂Y2O3 荧光陶瓷纤维的制备及其发光性能[J]. 发光学报, 2021, 42(12):1891-1899.
ZHANG L Z, WANG Z H, HUANG J, et al. Fabrication and photoluminescence properties of Eu3+ doped Y2O3 ceramic fiber with high aspect ratio[J]. Chin. J. Lumin., 2021, 42(12):1891-1899. (in Chinese)
YANG X N, LI Q H, LI X, et al. Color tunable Dy3+-doped Sr9Ga(PO4)7 phosphors for optical thermometric sensing materials[J]. Opt. Mater., 2020, 107:110133.
WEI K, LI P P, DUAN Y M, et al. Temperature-dependent color-tunable luminescence in CsPbBr3∶Dy3+ glass ceramic[J]. J. Non-Cryst. Solids, 2021, 570:121022.
LISIECKI R, KOMAR J, MACALIK B, et al. Exploring the impact of structure-sensitivity factors on thermographic properties of Dy3+-doped oxide crystals[J]. Materials, 2021, 14(9):2370-1-19.
HERTLE E, CHEPYGA L, OSVET A, et al. (Gd,Lu)AlO3∶Dy3+ and (Gd,Lu)3 Al5O12∶Dy3+ as high-temperature thermographic phosphors[J]. Meas. Sci. Technol., 2019, 30(3):034001-1-15.
HERTLE E, CHEPYGA L, BATENTSCHUK M, et al. Temperature-dependent luminescence characteristics of Dy3+ doped in various crystalline hosts[J]. J. Lumin., 2018, 204:64-74.
CULUBRK S, LOJPUR V, AHRENKIEL S P, et al. Non-contact thermometry with Dy3+ doped Gd2Ti2O7 nano-powders[J]. J. Lumin., 2016, 170:395-400.
FUKABORI A, CHANI V, KAMADA K, et al. Growth of Tm3+-doped Y2O3 ,Sc2O3, and Lu2O3 crystals by the micropulling down technique and their optical and scintillation characteristics[J]. Cryst. Growth Des., 2011, 11(6):2404-2411.
MCMILLEN C D, SANJEEWA L D, MOORE C A, et al. Crystal growth and phase stability of Ln∶Lu2O3 (Ln=Ce,Pr,Nd,Sm,Eu,Tb,Dy,Ho,Er,Tm,Yb) in a higher-temperature hydrothermal regime[J]. J. Cryst. Growth, 2016, 452:146-150.
GUZIK M, PEJCHAL J, YOSHIKAWA A, et al. Structural investigations of Lu2O3 as single crystal and polycrystalline transparent ceramic[J]. Cryst. Growth Des., 2014, 14(7):3327-3334.
PETERMANN K, FORNASIERO L, MIX E, et al. High melting sesquioxides:crystal growth, spectroscopy, and laser experiments[J]. Opt. Mater., 2002, 19(1):67-71.
FORNASIERO L, MIX E, PETERS V, et al. New oxide crystals for solid state lasers[J]. Cryst. Res. Technol., 1999, 34(2):255-260.
YIN Y R, WANG G J, JIA Z T, et al. Controllable and directional growth of Er∶Lu2O3 single crystals by the edge-defined film-fed technique[J]. CrystEngComm, 2020, 22(39):6569-6573.
ZHANG N, ZHOU H L, YIN Y R, et al. Exploring promising up-conversion luminescence single crystal fiber in sesquioxide family for high temperature optical thermometry application[J]. J. Alloys Compd., 2021, 889:161348.
ZHANG N, YIN Y Q, ZHANG J, et al. Optimized growth of high length-to-diameter ratio Lu2O3 single crystal fibers by the LHPG method[J]. CrystEngComm, 2021, 23(7):1657-1662.
CHEPYGA L M, HERTLE E, ALI A, et al. Synthesis and photoluminescent properties of the Dy3+ doped YSO as a high-temperature thermographic phosphor[J]. J. Lumin., 2018, 197:23-30.
0
浏览量
318
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构