浏览全部资源
扫码关注微信
1.内蒙古师范大学物理与电子信息学院 内蒙古自治区功能材料物理与化学重点实验室,内蒙古 呼和浩特 010020
2.内蒙古自治区稀土功能和新能源储能材料工程研究中心,内蒙古 呼和浩特 010020
3.内蒙古大学 物理科学与技术学院,内蒙古 呼和浩特 010021
[ "米亚金(1998-),男,内蒙古二连浩特人,硕士研究生,2020年于内蒙古师范大学获得学士学位,主要从事阳离子掺杂优化铜锌锡硫硒薄膜太阳能电池性能的研究。E-mail: 1787938204@qq.com" ]
[ "杨艳春(1989-),女,山西应县人,博士,副教授、硕士生导师,2017年于中国科学院长春应用化学研究所获得博士学位,主要从事溶液法制备铜基薄膜太阳能电池及其性能优化的研究。E-mail: 20170020@imnu.edu.cn" ]
纸质出版日期:2022-02,
收稿日期:2021-11-03,
修回日期:2021-11-22,
移动端阅览
米亚金, 杨艳春, 王晓宁, 等. 部分阳离子取代优化铜锌锡硫硒薄膜太阳能电池性能研究进展[J]. 发光学报, 2022,43(2):255-267.
YA-JIN MI, YAN-CHUN YANG, XIAO-NING WANG, et al. Research Progress on Optimizing Performance of Cu2ZnSn(S,Se)4Thin-film Solar Cells by Partial Cation Substitutions. [J]. Chinese journal of luminescence, 2022, 43(2): 255-267.
米亚金, 杨艳春, 王晓宁, 等. 部分阳离子取代优化铜锌锡硫硒薄膜太阳能电池性能研究进展[J]. 发光学报, 2022,43(2):255-267. DOI: 10.37188/CJL.20210340.
YA-JIN MI, YAN-CHUN YANG, XIAO-NING WANG, et al. Research Progress on Optimizing Performance of Cu2ZnSn(S,Se)4Thin-film Solar Cells by Partial Cation Substitutions. [J]. Chinese journal of luminescence, 2022, 43(2): 255-267. DOI: 10.37188/CJL.20210340.
作为无机化合物薄膜太阳能电池中具有代表性的一类电池,铜锌锡硫硒(Cu
2
ZnSn(S
Se)
4
,简称CZTSSe)薄膜太阳能电池因其组成元素地壳含量丰富、低毒等优点受到广泛关注。目前,吸收层的高缺陷密度和器件的低开路电压被认为是限制该类电池效率的两个关键因素。为了突破这两大困境,科研人员发展了阳离子取代方法,即通过引入其他阳离子取代CZTSSe晶格中的铜离子(Cu
+
)/锌离子(Zn
2+
)/锡离子(Sn
4+
),改善薄膜中的有害缺陷、晶体结构、能带结构等性质,从而优化电池器件的性能。为了详细阐述阳离子取代措施在铜锌锡硫硒薄膜电池中的研究进展,本文从等价阳离子取代和不等价阳离子取代两方面进行分类介绍,并总结了各种阳离子取代措施在优化电池性能方面的优缺点。
As a representative of inorganic thin film solar cells
Cu
2
ZnSn(S
Se)
4
(CZTSSe) thin film solar cells have attracted much extensive attention
since the constituent elements are rich in earth
low toxic
etc
. At present
high defect density of the absorber layer and low open circuit voltage of device are both considered as two key factors limiting the efficiency of device. In order to break though the two difficulties
the researchers developed the substitutions of Cu
+
/Zn
2+
/Sn
4+
by another cation. This can optimize the film properties of the harmful defects
crystal structure
and band structure
improving the performance of devices. Here
we classify by equivalent and inequivalent cation substitutions to elaborate current research development of CZTSSe thin film solar cells by cation substitution
and summarize their advantage and disadvantage in optimizing performance of devices.
薄膜太阳能电池铜锌锡硫硒阳离子取代
thin film solar cellCu2ZnSn(SSe)4cation substitutions
崔国楠, 杨艳春, 张婧英, 等. 烧结氛围对铜锌锡硫硒薄膜性质的影响[J]. 内蒙古师范大学学报(自然科学汉文版), 2020, 49(3):209-213.
CUI G N, YANG Y C, ZHANG J Y, et al. Effect of sintering atmosphere on properties of Cu2ZnSn(S,Se)4 thin films[J]. J. Inner Mongolia Norm. Univ. (Nat. Sci. Ed.), 2020, 49(3):209-213. (in Chinese)
杨艳春. 碱金属(Li+,Na+)对Cu2ZnSn(S,Se)4薄膜太阳能电池性能的影响研究[D]. 长春: 中国科学院长春应用化学研究所, 2017.
YANG Y C. Effects of Alkali Metal (Li+, Na+) on Performance of Cu2ZnSn(S, Se)4 Thin Film Solar Cells[D]. Changchun: Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 2017. (in Chinese)
崔国楠, 杨艳春, 李月敏, 等. 溶液法制备铜锌锡硫硒薄膜太阳能电池的研究进展[J]. 硅酸盐学报, 2021, 49(3):483-494.
CUI G N, YANG Y C, LI Y M, et al. Solution-processed Cu2ZnSn(S,Se)4 thin film solar cells[J]. J. Chem. Ceram. Soc., 2021, 49(3):483-494. (in Chinese)
张艳珠. CZTSSe吸光层结晶性的改善及其对电池效率的影响[D]. 郑州: 河南大学, 2016.
ZHANG Y Z. Improving the Crystallinity of the CZTSSe Absorber and It's Impact on the Solar Cell Efficiency[D]. Zhengzhou: Henan University, 2016. (in Chinese)
ZHOU J Z, XU X, DUAN B W, et al. Regulating crystal growth via organic lithium salt additive for efficient kesterite solar cells[J]. Nano Energy, 2021, 89:106405.
葛杰, 江锦春, 胡古今, 等. 硫代硫酸钠浓度对电沉积制备铜锌锡硫硒薄膜性质的影响[J]. 红外与毫米波学报, 2013, 32(4):289-293.
GE J, JING J C, HU G J, et al. Effect of Na2S2O3·5H2O concentration on the properties of Cu2ZnSn(S,Se)4 thin films fabricated by selenization of co-electroplated Cu-Zn-Sn-S precursors[J]. J. Infrared Millim. Waves, 2013, 32(4):289-293. (in English)
张克智, 何俊, 王伟君, 等. 溶胶-凝胶非硫化法制备铜锌锡硫薄膜[J]. 红外与毫米波学报, 2015, 34(2):129-133.
ZHANG K Z, HE J, WANG W J, et al. Cu2ZnSnS4 films fabricated by a simple sol-gel process without sulfurization[J]. J. Infrared Millim. Waves, 2015, 34(2):129-133. (in English)
FU J J, FU J, TIAN Q W, et al. Tuning the Se content in Cu2ZnSn(S,Se)4 absorber to achieve 9.7% solar cell efficiency from a thiol/amine-based solution process[J]. ACS Appl. Energy Mater., 2018, 1(2):594-601.
ZHAO Y, HAN X X, CHANG L, et al. Effects of selenization conditions on microstructure evolution in solution processed Cu2ZnSn(S,Se)4 solar cells[J]. Sol. Energy Mater. Sol. Cells, 2019, 195:274-279.
赵其琛, 郝瑞亭, 刘思佳, 等. 退火温度对分步溅射制备铜锌锡硫薄膜性能的影响[J]. 激光与光电子学进展, 2017, 54(9):091601-1-5.
ZHAO Q C, HAO R T, LIU S J, et al. Influence of annealing temperature on properties of Cu2ZnSnS4 thin films prepared by step sputtering[J]. Laser Optoelectron. Prog., 2017, 54(9):091601-1-5. (in Chinese)
孙孪鸿, 沈鸿烈, 黄护林, 等. 硒化温度对共溅射法制备的CZTSSe薄膜与电池性能的影响[J]. 发光学报, 2019, 40(1):82-88.
SUN L H, SHEN H L, HUANG H L, et al. Influence of selenization temperature on co-sputtered CZTSSe thin films and related solar cells[J]. Chin. J. Lumin., 2019, 40(1):82-88. (in Chinese)
YANG Y C, KANG X J, HUANG L J, et al. A general water-based precursor solution approach to deposit earth abundant Cu2ZnSn(S,Se)4 thin film solar cells[J]. J. Power Sources, 2016, 313:15-20.
YANG Y C, KANG X J, HUANG L J, et al. Facile and low-cost sodium-doping method for high-efficiency Cu2ZnSnSe4 thin film solar cells[J]. J. Phys. Chem. C, 2015, 119(40):22797-22802.
YANG Y C, WANG G, ZHAO W G, et al. Solution-processed highly efficient Cu2ZnSnSe4 thin film solar cells by dissolution of elemental Cu, Zn, Sn, and Se powders[J]. ACS Appl. Mater. Interfaces, 2015, 7(1):460-464.
XIAO H Q, ZHOU W H, KOU D X, et al. Regulation of selenium composition by supercritical carbon dioxide for CZTSSe solar cells efficiency improvement[J]. Sol. Energy Mater. Sol. Cells, 2021, 231:111308.
ZHANG P P, YU Q, MIN X, et al. Fabrication of Cu2ZnSn(S,Se)4 photovoltaic devices with 10% efficiency by optimizing the annealing temperature of precursor films[J]. RSC Adv., 2018, 8(8):4119-4124.
LI Y, ZHANG H X, ZHAO Y, et al. Influence of the selenization condition on the properties of ambient-air processed CZTSSe thin films and device performance[J]. Appl. Surf. Sci., 2020, 516:145872-1-7.
WANG S Y, GAO S S, WANG D X, et al. Room-temperature surface sulfurization for high-performance kesterite CZTSe solar cells[J]. Sol. RRL, 2019, 3(1):1800236.
刘仪柯, 唐雅琴, 蒋良兴, 等. 溅射Cu-Zn-Sn金属预制层后硫(硒)化法制备Cu2ZnSn(SxSe1-x)4薄膜及其光伏特性[J]. 材料导报, 2018, 32A(9):1412-1416, 1422.
LIU Y K, TANG Y Q, JIANG L X, et al. Photovoltaic characteristics of Cu2ZnSn(SxSe1-x)4 thin films synthesized via the process of Cu-Zn-Sn presputtering and subsequent sulfurization(Selenization) annealing[J]. Mater Rev., 2018, 32A(9):1412-1416, 1422. (in Chinese)
张克智, 陶加华, 刘俊峰, 等. 简单的溶胶-凝胶法制备致密的铜锌锡硫硒薄膜[J]. 无机材料学报, 2014, 29(7):781-784.
ZHANG K Z, TAO J H, LIU J F, et al. Compact Cu2ZnSn(S,Se)4 thin films fabricated by a simple sol-gel technique[J]. J. Inorg. Mater., 2014, 29(7):781-784. (in English)
YUAN M, WANG J L, ZHOU W H, et al. Cu2ZnSnS4-CdS heterostructured nanocrystals for enhanced photocatalytic hydrogen production[J]. Catal. Sci. Technol., 2017, 7(18):3980-3984.
ZHANG A F, SONG Z Y, ZHOU Z J, et al. Engineering the band offsets at the back contact interface for efficient kesterite CZTSSe solar cells[J]. ACS Appl. Energy Mater., 2020, 3(11):10976-10982.
ZHANG Z J, YAO L Y, ZHANG Y, et al. Modified back contact interface of CZTSe thin film solar cells:elimination of double layer distribution in absorber layer[J]. Adv. Sci., 2018, 5(2):1700645-1-9.
GAO S S, ZHANG Y, AO J P, et al. Tailoring Mo(S,Se)2 structure for high efficient Cu2ZnSn(S,Se)4 solar cells[J]. Sol. Energy Mater. Sol. Cells, 2018, 176:302-309.
宋思悦, 刘旭炜, 林鸿霄, 等. 电镀法在氧化铟锡上制备铜锌锡硫薄膜的光谱特征[J]. 光谱学与光谱分析, 2019, 39(9):2940-2945.
SONG S R, LIU X W, LIN H X, et al. Spectral characterization of electrodeposited Cu2ZnSnS4 thin films on fluorine-doped tin oxide[J]. Spectrosc. Spect. Anal., 2019, 39(9):2940-2945. (in Chinese)
TAO J H, LIU J F, CHEN L L, et al. 7.1% efficient co-electroplated Cu2ZnSnS4 thin film solar cells with sputtered CdS buffer layers[J]. Green Chem., 2016, 18(2):550-557.
TAO J H, ZHANG K Z, ZHANG C J, et al. A sputtered CdS buffer layer for co-electrodeposited Cu2ZnSnS4 solar cells with 6.6% efficiency[J]. Chem. Commun., 2015, 51(51):10337-10340.
TAO J H, CHEN L L, CAO H Y, et al. Co-electrodeposited Cu2ZnSnS4 thin-film solar cells with over 7% efficiency fabricated via fine-tuning of the Zn content in absorber layers[J]. J. Mater. Chem. A, 2016, 4(10):3798-3805.
ZHAO Y, HAN X X, LI W, et al. Synthesis of the Cu2ZnSn(S,Se)4 alloys with tunable phase structure and composition via a novel non-toxic solution method[J]. RSC Adv., 2013, 3(48):26160-26165.
PEI Y L, GUO J, KOU D X, et al. Precise-tuning the In content to achieve high fill factor in hybrid buffer structured Cu2ZnSn(S,Se)4 solar cells[J]. Sol. Energy, 2017, 148:157-163.
XU X, GUO L B, ZHOU J Z, et al. Efficient and composition-tolerant kesterite Cu2ZnSn(S,Se)4 solar cells derived from an in situ formed multifunctional carbon framework[J]. Adv. Energy Mater., 2021, 11(40):2102298.
CUI G N, YANG Y C, CHEN R L, et al. Influence of extra trace Mn-doping on the properties of Cu2ZnSn(S,Se)4 absorber layer[J]. Opt. Mater., 2021, 111:110707.
WANG D X, WU J Y, LIU X Y, et al. Formation of the front-gradient bandgap in the Ag doped CZTSe thin films and solar cells[J]. J. Energy Chem., 2019, 35:188-196.
马骕驭, 马传贺, 卢小双, 等. 铜锌锡硫带边电子结构及缺陷态的光学表征[J]. 红外与毫米波学报, 2020, 39(1):92-98.
MA S Y, MA C H, LU X S, et al. Optical characterization of bandedge electronic structure and defect states in Cu2ZnSnS4[J]. J. Infrared Millim. Waves, 2020, 39(1):92-98. (in Chinese)
GAO S S, ZHANG Y, AO J P, et al. Insight into the role of post-annealing in air for high efficient Cu2ZnSn(S,Se)4 solar cells[J]. Sol. Energy Mater. Sol. Cells, 2018, 182:228-236.
YU K, CARTER E A. Determining and controlling the stoichiometry of Cu2ZnSnS4 photovoltaics:the physics and its implications[J]. Chem. Mater., 2016, 28(12):4415-4420.
HE M P, KOU D X, ZHOU W H, et al. Se-assisted performance enhancement of Cu2ZnSn(S,Se)4 quantum-dot sensitized solar cells via a simple yet versatile synthesis[J]. Inorg. Chem., 2019, 58(19):13285-13292.
ZHAO Y C, ZHAO X Y, KOU D X, et al. Local Cu component engineering to achieve continuous carrier transport for enhanced kesterite solar cells[J]. ACS Appl. Mater. Interfaces, 2021, 13(1):795-805.
樊彦艳, 索红莉, 冯叶, 等. Cd掺杂的Cu2ZnSnS4光伏材料的发光光谱及其太阳能电池器件特性[J]. 发光学报, 2017, 38(10):1338-1345.
PAN Y Y, SUO H L, FENG Y, et al. Photoluminescence properties Cd-doped Cu2ZnSnS4 thin films and performance of the solar cells[J]. Chin. J. Lumin., 2017, 38(10):1338-1345. (in Chinese)
NAGAI T, SHIMAMURA T, TANIGAWA K, et al. Band alignment of the CdS/Cu2Zn(Sn1-xGex)Se4 heterointerface and electronic properties at the Cu2Zn(Sn1-xGex)Se4 surface:x = 0,0.2, and 0.4[J]. ACS Appl. Mater. Interfaces, 2019, 11(4):4637-4648.
YANG Y C, KANG X J, HUANG L J, et al. Tuning the band gap of Cu2ZnSn(S,Se)4 thin films via lithium alloying[J]. ACS Appl. Mater. Interfaces, 2016, 8(8):5308-5313.
SUTTER-FELLA C M, STÜCKELBERGER J A, HAGENDORFER H, et al. Sodium assisted sintering of chalcogenides and its application to solution processed Cu2ZnSn(S,Se)4 thin film solar cells[J]. Chem. Mater., 2014, 26(3):1420-1425.
SHI X A, WANG Y X, YU H, et al. Significantly improving the crystal growth of a Cu2ZnSn(S,Se)4 absorber layer by air-annealing a Cu2ZnSnS4 precursor thin film[J]. ACS Appl. Mater. Interfaces, 2020, 12(37):41590-41595.
COLLORD A D, HILLHOUSE H W. Germanium alloyed kesterite solar cells with low voltage deficits[J]. Chem. Mater., 2016, 28(7):2067-2073.
GERSHON T, GUNAWAN O, GOKMEN T, et al. Analysis of loss mechanisms in Ag2ZnSnSe4 Schottky barrier photovoltaics[J]. J. Appl. Phys., 2017, 121(17):174501-1-7.
SU Z H, TAN J M R, LI X L, et al. Cation substitution of solution-processed Cu2ZnSnS4 thin film solar cell with over 9% efficiency[J]. Adv. Energy Mater., 2015, 5(19):1500682-1-7.
CHEN S Y, WALSH A, YANG J H, et al. Compositional dependence of structural and electronic properties of Cu2ZnSn(S,Se)4 alloys for thin film solar cells[J]. Phys. Rev. B, 2011, 83(12):125201-1-5.
PAIER J, ASAHI R, NAGOYA A, et al. Cu2ZnSnS4 as a potential photovoltaic material:a hybrid hartree-fock density functional theory study[J]. Phys. Rev. B, 2009, 79(11):115126-1-8.
YAN Q, CHENG S Y, YU X, et al. Mechanism of current shunting in flexible Cu2Zn1-xCdxSn(S,Se)4 solar cells[J]. Sol. RRL, 2020, 4(1):1900410-1-10.
WU Y J, ZHANG Y, SUI Y R, et al. Bandgap engineering of Cu2InxZn1-xSn(S,Se)4 alloy films for photovoltaic applications[J]. Ceram. Int., 2018, 44(2):1942-1950.
CABAS-VIDANI A, HAASS S G, ANDRES C, et al. High-efficiency (LixCu1-x)2ZnSn(S,Se)4 kesterite solar cells with lithium alloying[J]. Adv. Energy Mater., 2018, 8(34):1801191-1-8.
GONG Y C, QIU R C, NIU C Y, et al. Ag incorporation with controlled grain growth enables 12.5% efficient kesterite solar cell with open circuit voltage reached 64.2% Shockley-queisser limit[J]. Adv. Funct. Mater., 2021, 31(24):2101927-1-11.
WANG Y M, YANG Y C, ZHU C J, et al. Boosting the electrical properties of Cu2ZnSn(S,Se)4 solar cells via low amounts of Mg substituting Zn[J]. ACS Appl. Energy Mater., 2020, 3(11):11177-11182.
GUO J J, MAO Y, ZHANG Z J, et al. Enhancing the photovoltaic performance of Cu2ZnSn(S,Se)4 solar cells with Ba trace doping:large chemical mismatch cation incorporation[J]. Sol. RRL, 2021, 5(11):2100607.
LI X L, HOU Z F, GAO S S, et al. Efficient optimization of the performance of Mn2+-doped kesterite solar cell:machine learning aided synthesis of high efficient Cu2(Mn,Zn)Sn(S,Se)4 solar cells[J]. Sol. RRL, 2018, 2(12):1800198.
SU Z H, LIANG G X, FAN P, et al. Device postannealing enabling over 12% efficient solution-processed Cu2ZnSnS4 solar cells with Cd2+ substitution[J]. Adv. Mater., 2020, 32(32):2000121-1-12.
KIM S, KIM K M, TAMPO H, et al. Improvement of voltage deficit of Ge-incorporated kesterite solar cell with 12.3% conversion efficiency[J]. Appl. Phys. Express, 2016, 9(10):102301-1-4.
DU Y C, WANG S S, TIAN Q W, et al. Defect engineering in earth-abundant Cu2ZnSn(S,Se)4 photovoltaic materials via Ga3+-doping for over 12% efficient solar cells[J]. Adv. Funct. Mater., 2021, 31(16):2010325-1-11.
WU Y J, HE W J, SUI Y R, et al. A new insight of In-doped Cu2ZnSn(S,Se)4 thin films for photovoltaic application[J]. J. Alloys Compd., 2020, 829:154492.
MAEDA T, KAWABATA A, WADA T. First-principles study on alkali-metal effect of Li, Na, and K in Cu2ZnSnS4 and Cu2ZnSnSe4[J]. Phys. Stat. Sol. C, 2015, 12(6):631-637.
ALTAMURA G, WANG M Q, CHOY K L. Influence of alkali metals (Na,Li,Rb) on the performance of electrostatic spray-assisted vapor deposited Cu2ZnSn(S,Se)4 solar cells[J]. Sci. Rep., 2016, 6(1):22109-1-9.
DUAN B W, GUO L B, YU Q, et al. Highly efficient solution-processed CZTSSe solar cells based on a convenient sodium-incorporated post-treatment method[J]. J. Energy Chem., 2020, 40:196-203.
周家正, 徐啸, 段碧雯, 等. 铜锌锡硫硒薄膜太阳能电池一价金属替位的研究进展[J]. 化学学报, 2021, 79(3):303-318.
ZHOU J Z, XU X, DUAN B W, et al. Research progress of metal(Ⅰ) substitution in Cu2ZnSn(S,Se)4 thin film solar cells[J]. Acta Chim. Sinica, 2021, 79(3):303-318. (in Chinese)
GERSHON T, LEE Y S, ANTUNEZ P, et al. Photovoltaic materials and devices based on the alloyed kesterite absorber (AgxCu1-x)2ZnSnSe4[J]. Adv. Energy Mater., 2016, 6(10):1502468-1-7.
XIN H, VORPAHL S M, COLLORD A D, et al. Lithium-doping inverts the nanoscale electric field at the grain boundaries in Cu2ZnSn(S,Se)4 and increases photovoltaic efficiency[J]. Phys. Chem. Chem. Phys., 2015, 17(37):23859-23866.
ZHAO X Y, KOU D X, ZHOU W H, et al. Nanoscale electrical property enhancement through antimony incorporation to pave the way for the development of low-temperature processed Cu2ZnSn(S,Se)4 solar cells[J]. J. Mater. Chem. A, 2019, 7(7):3135-3142.
DONG X F, ZHENG T T, YANG F X, et al. An effective Li-containing interfacial-treating strategy for performance enhancement of air-processed CZTSSe solar cells[J]. Sol. Energy Mater. Sol. Cells, 2021, 227:111102-1-9.
ZHAO X Y, CHANG X H, KOU D X, et al. Lithium-assisted synergistic engineering of charge transport both in GBs and GI for Ag-substituted Cu2ZnSn(S,Se)4 solar cells[J]. J. Energy Chem., 2020, 50:9-15.
YANG Y C, HUANG L J, PAN D C. New insight of Li-doped Cu2ZnSn(S,Se)4 thin films:Li-induced Na diffusion from soda lime glass by a cation-exchange reaction[J]. ACS Appl. Mater. Interfaces, 2017, 9(28):23878-23883.
QI Y F, LIU Y, KOU D X, et al. Enhancing grain growth for efficient solution-processed (Cu,Ag)2ZnSn(S,Se)4 solar cells based on acetate precursor[J]. ACS Appl. Mater. Interfaces, 2020, 12(12):14213-14223.
YU X, CHENG S Y, YAN Q, et al. Efficient (Cu1-xAgx)2ZnSn(S,Se)4 solar cells on flexible Mo foils[J]. RSC Adv., 2018, 8(49):27686-27694.
ZHAO Y, HAN X X, XU B, et al. Enhancing open-circuit voltage of solution-processed Cu2ZnSn(S,Se)4 solar cells with Ag substitution[J]. IEEE J. Photovolt., 2017, 7(3):874-881.
QI Y F, TIAN Q W, MENG Y N, et al. Elemental precursor solution processed (Cu1-xAgx)2ZnSn(S,Se)4 photovoltaic devices with over 10% efficiency[J]. ACS Appl. Mater. Interfaces, 2017, 9(25):21243-21250.
QI Y F, KOU D X, ZHOU W H, et al. Engineering of interface band bending and defects elimination via a Ag-graded active layer for efficient (Cu,Ag)2ZnSn(S,Se)4 solar cells[J]. Energy Environ. Sci., 2017, 10(11):2401-2410.
CHEN R Z, PERSSON C. Electronic and optical properties of Cu2XSnS4 (X = Be,Mg,Ca,Mn,Fe,and Ni) and the impact of native defect pairs[J]. J. Appl. Phys., 2017, 121(20):203104-1-9.
TONG Z F, YUAN J Y, CHEN J R, et al. Optical and photoelectrochemical properties of Cu2SrSnS4 thin film fabricated by a facial ball-milling method[J]. Mater. Lett., 2019, 237:130-133.
CROVETTO A, NIELSEN R, STAMATE E, et al. Wide band gap Cu2SrSnS4 solar cells from oxide precursors[J]. ACS Appl. Energy Mater., 2019, 2(10):7340-7344.
SURESH K M, MADHUSUDANAN S P, RAJAMANI A R, et al. Barium substitution in kesterite Cu2ZnSnS4∶Cu2Zn1-xBax-SnS4 quinary alloy thin films for efficient solar energy harvesting[J]. Cryst. Growth Des., 2020, 20(7):4387-4394.
SUI Y R, ZHANG Y, JIANG D Y, et al. Investigation of optimum Mg doping content and annealing parameters of Cu2Mgx-Zn1-xSnS4 thin films for solar cells[J]. Nanomaterials, 2019, 9(7):955-1-13.
HUSSEIN H, YAZDANI A. Investigation the influence of Fe (Ⅲ) doping in Cu2ZnSnS4 semiconductor:structural, optical and magnetic properties[J]. Optik, 2019, 179:505-513.
KAUR K, NISIKA , CHOWDHURY A H, et al. Nanoscale charge transport and local surface potential distribution to probe the defect passivation in Cr-substituted earth abundant CZTS absorber layer[J]. J. Alloys Compd., 2021, 854:157160-1-10.
DIGRASKAR R V, SAPNER V S, NARWADE S S, et al. Enhanced electrocatalytic hydrogen generation from water via cobalt-doped Cu2ZnSnS4 nanoparticles[J]. RSC Adv., 2018, 8(36):20341-20346.
ZHANG J Y, YANG Y C, CUI G N, et al. Enhancing electrical properties of Cu2ZnSn(S,Se)4 thin films via trace Co incorporation[J]. Mater. Chem. Phys., 2021, 262:124318.
CHIHI A, BOUJMI M F, BESSAIS B. Synthesis and characterization of photoactive material Cu2NiSnS4 thin films[J]. J. Mater. Sci.:Mater. Electron., 2019, 30(4):3338-3348.
WEI M, DU Q Y, WANG R, et al. Synthesis of new earth-abundant kesterite Cu2MgSnS4 nanoparticles by hot-injection method[J]. Chem. Lett., 2014, 43(7):1149-1151.
LIE S, LEOW S W, BISHOP D M, et al. Improving carrier-transport properties of CZTS by Mg incorporation with spray pyrolysis[J]. ACS Appl. Mater. Interfaces, 2019, 11(29):25824-25832.
SHIN D, NGABOYAMAHINA E, ZHOU Y H, et al. Synthesis and characterization of an earth-abundant Cu2BaSn(S,Se)4 chalcogenide for photoelectrochemical cell application[J]. J. Phys. Chem. Lett., 2016, 7(22):4554-4561.
GUO H F, MA C H, CHEN Z W, et al. The fabrication of Cu2BaSnS4 thin film solar cells utilizing a maskant layer[J]. Sol. Energy, 2019, 181:301-307.
HE W J, SUI Y R, ZENG F C, et al. Enhancing the performance of aqueous solution-processed Cu2ZnSn(S,Se)4 photovoltaic materials by Mn2+ substitution[J]. Nanomaterials, 2020, 10(7):1250-1-13.
LIE S, TAN J M R, LI W J, et al. Reducing the interfacial defect density of CZTSSe solar cells by Mn substitution[J]. J. Mater. Chem. A, 2018, 6(4):1540-1550.
LIE S, SANDI M I, TAY Y F, et al. Improving the charge separation and collection at the buffer/absorber interface by double-layered Mn-substituted CZTS[J]. Sol. Energy Mater. Sol. Cells, 2018, 185:351-358.
MAEDA T, NAKAMURA S, WADA T. First-principles study on Cd doping in Cu2ZnSnS4 and Cu2ZnSnSe4[J]. Jpn. J. Appl. Phys., 2012, 51(10S):10NC11-1-6.
ZHANG Q, DENG H M, CHEN L L, et al. Cation substitution induced structural transition, band gap engineering and grain growth of Cu2CdxZn1-xSnS4 thin films[J]. J. Alloys Compd., 2017, 695:482-488.
HADKE S, CHEN W, TAN J M R, et al. Effect of Cd on cation redistribution and order-disorder transition in Cu2(Zn,Cd)-SnS4[J]. J. Mater. Chem. A, 2019, 7(47):26927-26933.
YAN C, SUN K W, HUANG J L, et al. Beyond 11% efficient sulfide kesterite Cu2ZnxCd1-xSnS4 solar cell:effects of cadmium alloying[J]. ACS Energy Lett., 2017, 2(4):930-936.
XIAO Z Y, LI Y F, YAO B, et al. Bandgap engineering of Cu2CdxZn1-xSnS4 alloy for photovoltaic applications:a complementary experimental and first-principles study[J]. J. Appl. Phys., 2013, 114(18):183506-1-7.
GUO H F, LI Y, GUO X H, et al. Effect of silicon doping on electrical and optical properties of stoichiometric Cu2ZnSnS4 solar cells[J]. Phys. B:Condens. Matter, 2018, 531:9-15.
DENG Y Q, ZHOU Z J, ZHANG X, et al. Adjusting the SnZn defects in Cu2ZnSn(S,Se)4 absorber layer via Ge4+ implanting for efficient kesterite solar cells[J]. J. Energy Chem., 2021, 61:1-7.
ZHANG Z J, GAO Q, GUO J J, et al. Over 10% efficient pure CZTSe solar cell fabricated by electrodeposition with Ge doping[J]. Sol. RRL, 2020, 4(5):2000059-1-9.
ZONG K, LU S H, WANG H, et al. The synthesis of Cu2Zn(GexSn1-x)Se4 nanocrystals with tunable band gaps[J]. CrystEngComm, 2013, 15(35):6942-6947.
BAG S, GUNAWAN O, GOKMEN T, et al. Hydrazine-processed Ge-substituted CZTSe solar cells[J]. Chem. Mater., 2012, 24(23):4588-4593.
TIAN Q W, LIU S Z. Defect suppression in multinary M2I-MⅡ-MⅣ-Ch4 chalcogenide photovoltaic materials derived from kesterite:progress and outlook[J]. J. Mater. Chem. A, 2020, 8(47):24920-24942.
DU Y C, TIAN Q W, HUANG J, et al. Heterovalent Ga3+ doping in solution-processed Cu2ZnSn(S,Se)4 solar cells for better optoelectronic performance[J]. Sustainable Energy Fuels, 2020, 4(4):1621-1629.
YU X, CHENG S Y, YAN Q, et al. Efficient flexible Mo foil-based Cu2ZnSn(S,Se)4 solar cells from In-doping technique[J]. Sol. Energy Mater. Sol. Cells, 2020, 209:110434-1-7.
ZENG F C, SUI Y R, WU Y J, et al. Structural, optical and electrical properties of indium doped Cu2ZnSn(S,Se)4 thin films synthesized by the DC and RF reactive magnetron cosputtering[J]. Ceram. Int., 2021, 47(13):18376-18384.
0
浏览量
445
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构