浏览全部资源
扫码关注微信
1.中国科学院半导体研究所 半导体照明研发中心,北京 100083
2.中国科学院大学 材料与光电研究中心,北京 100049
[ "郭亮(1996-),男,江西吉安人,硕士研究生,2018年于合肥工业大学获得学士学位,主要从事通信用深紫外LED的研究。E-mail: guoliang18@semi.ac.cn" ]
[ "魏同波(1978-),男,山东潍坊人,博士,研究员,2007年于中国科学院半导体研究所获得博士学位,主要从事宽禁带半导体材料生长及器件制备的研究。E-mail: tbwei@semi.ac.cn" ]
纸质出版日期:2022-01,
收稿日期:2021-10-25,
修回日期:2021-11-11,
扫 描 看 全 文
郭亮, 郭亚楠, 羊建坤, 等. 量子垒高度对深紫外LED调制带宽的影响[J]. 发光学报, 2022,43(1):1-7.
Liang GUO, Ya-nan GUO, Jian-kun YANG, et al. Effect of Barrier Height on Modulation Characteristics of AlGaN-based Deep Ultraviolet Light-emitting Diodes[J]. Chinese Journal of Luminescence, 2022,43(1):1-7.
郭亮, 郭亚楠, 羊建坤, 等. 量子垒高度对深紫外LED调制带宽的影响[J]. 发光学报, 2022,43(1):1-7. DOI: 10.37188/CJL.20210331.
Liang GUO, Ya-nan GUO, Jian-kun YANG, et al. Effect of Barrier Height on Modulation Characteristics of AlGaN-based Deep Ultraviolet Light-emitting Diodes[J]. Chinese Journal of Luminescence, 2022,43(1):1-7. DOI: 10.37188/CJL.20210331.
AlGaN基深紫外LED由于具有高调制带宽和小芯片尺寸,在紫外光通信领域受到越来越多的关注。本研究通过改变生长AlGaN量子垒层的Al源流量,生长了三种具有不同量子垒高度的深紫外LED,研究了量子垒高度对深紫外LED光电特性和调制特性的影响。研究发现,随着量子垒高度的增加,深紫外LED的光功率出现先增加后减小的趋势,量子垒中Al组分为55%的深紫外LED的光功率相比50%和60%的深紫外LED提升了近一倍。载流子寿命则出现先减小后增大的趋势,且发光峰峰值波长逐渐蓝移。APSYS模拟表明,随着量子垒高度增加,量子垒对载流子的束缚能力增强,电子空穴波函数空间重叠增加,载流子浓度和辐射复合速率增加;但进一步增加量子垒高度又会由于电子泄露,空穴浓度降低,从而辐射复合速率降低。量子垒中Al组分为55%的深紫外LED的-3 dB带宽达到94.4 MHz,高于量子垒Al组分为50%和60%的深紫外LED。
AlGaN-based deep ultraviolet LED has attracted more and more attention in ultraviolet communication due to its high modulation bandwidth and small chip size. In this study
AlGaN-based deep ultraviolet LEDs with varied Al composition of 50%
55%
60% in quantum barriers are fabricated. The effect of barrier height on the photoelectric and modulation characteristics of deep ultraviolet LEDs is studied. It is found that the optical power and external quantum efficiency (EQE) of the deep ultraviolet LED increase first and then decreased
and carrier lifetime decreases first and then increases as the quantum barrier height increases. The peak wavelength of the spectra shows a blue-shift. APSYS simulation revealed that the spacial overlap between the wave function of electron and hole is enhanced as Al composition increases. But further increase on barrier height will lead to current leakage which reduces the radiation recombination rate and carrier density in multi-quantum well layer. The -3 dB bandwidth of deep ultraviolet LED with 55% Al composition in quantum barrier is measured to be 94.4 MHz
higher than those with 50% and 60% Al composition in quantum barrier.
紫外光通信深紫外发光二极管多量子阱层调制带宽发光功率
ultraviolet communicationdeep ultraviolet light-emitting diodesmultiple-quantum-well layermodulation bandwidthoptical power
UAN R Z, MA J S. Review of ultraviolet non-line-of-sight communication[J]. China Commun., 2016, 13(6): 63-75.
DROST R J, SADLER B M. Survey of ultraviolet non-line-of-sight communications[J]. Semicond. Sci. Technol., 2014, 29(8): 084006-1-11.
SHAW G A, NISCHAN M L, IYENGAR M A, et alet al. NLOS UV communication for distributed sensor systems[C]. Proceedings of SPIE 4126, Integrated Command Environments, San Diego, CA, United States, 2000: 83-96.
KHAN A, BALAKRISHNAN K, KATONA T. Ultraviolet light-emitting diodes based on group three nitrides[J]. Nat. Photonics, 2008, 2(2): 77-84.
VAVOULAS A, SANDALIDIS H G, CHATZIDIAMANTIS N D, et al. A survey on ultraviolet C-band (UV-C) communications[J]. IEEE Commun. Surv. Tutor., 2019, 21(3): 2111-2133.
GUO L, GUO Y N, WANG J X, et al. Ultraviolet communication technique and its application[J]. J. Semicond., 2021, 42(8): 081801.
ZHANG H, HUANG C, SONG K, et al. Compositionally graded Ⅲ-nitride alloys: building blocks for efficient ultraviolet optoelectronics and power electronics[J]. Rep. Prog. Phys., 2021, 84(4): 044401-1-28.
HUANG C, ZHANG H C, SUN H D. Ultraviolet optoelectronic devices based on AlGaN-SiC platform: towards monolithic photonics integration system[J]. Nano Energy, 2020, 77: 105149.
YU H B, MEMON M H, WANG D H, et al. AlGaN-based deep ultraviolet micro-LED emitting at 275 nm[J]. Opt. Lett., 2021, 46(13): 3271-3274.
ALKHAZRAGI O, HU F C, ZOU P, et al. Gbit/s ultraviolet-C diffuse-line-of-sight communication based on probabilistically shaped DMT and diversity reception[J]. Opt. Express, 2020, 28(7): 9111-9122.
KOJIMA K, YOSHIDA Y, SHIRAIWA M, et alet al. 1.6-Gbps LED-based ultraviolet communication at 280 nm in direct sunlight[C]. Proceedings of the 2018 European Conference on Optical Communication, Rome, Italy, 2018: 1-3.
HE X Y, XIE E Y, ISLIM M S, et al. 1 Gbps free-space deep-ultraviolet communications based on Ⅲ-nitride micro-LEDs emitting at 262 nm[J]. Photonics Res., 2019, 7(7): B41-B47.
ZHU S J, QIU P J, QIAN Z Y, et al. 2 Gbps free-space ultraviolet-C communication based on a high-bandwidth micro-LED achieved with pre-equalization[J]. Opt. Lett., 2021, 46(9): 2147-2150.
BAUMGARTNER H, VASKURI A, KÄRHÄ P, et al. Temperature invariant energy value in LED spectra[J]. Appl. Phys. Lett., 2016, 109(23): 231103-1-4.
WANG T, NAKAGAWA D, WANG J, et al. Photoluminescence investigation of InGaN/GaN single quantum well and multiple quantum wells[J]. Appl. Phys. Lett., 1998, 73(24): 3571-3573.
REN Z J, YU H B, LIU Z L, et al. Band engineering of Ⅲ-nitride-based deep-ultraviolet light-emitting diodes: a review[J]. J. Phys. D:Appl. Phys., 2020, 53(7): 073002.
GUTTMANN M, HÖPFNER J, REICH C, et al. Effect of quantum barrier composition on electro-optical properties of AlGaN-based UVC light emitting diodes[J]. Semicond. Sci. Technol., 2019, 34(8): 085007-1-6.
王玮东, 楚春双, 张丹扬, 等. 俄歇复合、电子泄漏和空穴注入对深紫外发光二极管效率衰退的影响[J]. 发光学报, 2021, 42(7): 897-903.
WANG W D, CHU C S, ZHANG D Y, et al. Impact of auger recombination, electron leakage and hole injection on efficiency droop for DUV LEDs[J]. Chin. J. Lumin., 2021, 42(7): 897-903. (in Chinese)
ZHUANG Z, GUO X, LIU B, et al. Great enhancement in the excitonic recombination and light extraction of highly ordered InGaN/GaN elliptic nanorod arrays on a wafer scale[J]. Nanotechnology, 2016, 27(1): 015301.
刘恩科, 朱秉升, 罗晋生. 半导体物理学[M]. 第7版. 北京: 电子工业出版社, 2008.
LIU E K, ZHU B S, LUO J S. The Physics of Semiconductors[M]. 7th ed. Beijing: Publishing House of Electronics Industry, 2008. (in Chinese)
ZHU S C, YU Z G, ZHAO L X, et al. Enhancement of the modulation bandwidth for GaN-based light-emitting diode by surface plasmons[J]. Opt. Express, 2015, 23(11): 13752-13760.
0
浏览量
152
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构