浏览全部资源
扫码关注微信
吉林大学电子科学与工程学院 集成光电子学国家重点实验室,吉林 长春 130012
[ "胡强(1997-),男,黑龙江鹤岗人,硕士研究生,2019年于吉林大学获得学士学位,主要从事钙钛矿纳米晶发光二极管的研究。E-mail: huqiang19@mails.jlu.edu.cn" ]
[ "白雪(1981-),女,吉林长春人,博士,教授,博士生导师,2008年于中国科学院长春光学精密机械与物理研究所获得博士学位,主要从事纳米光电材料与器件的研究。E-mail: baix@jlu.edu.cn" ]
[ "宋宏伟(1967-),男,黑龙江阿城人,博士,教授,博士生导师,1996年于中国科学院长春物理研究所获得博士学位,主要从事稀土离子光谱物理、光电子学及其应用的研究。E-mail: songhw@jlu.edu.cn" ]
纸质出版日期:2022-01,
收稿日期:2021-10-23,
修回日期:2021-11-12,
扫 描 看 全 文
胡强, 白雪, 宋宏伟. 稀土离子掺杂钙钛矿纳米晶的光学性质和应用[J]. 发光学报, 2022,43(1):8-25.
Qiang HU, Xue BAI, Hong-wei SONG. Rare Earth Ion Doped Perovskite Nanocrystals[J]. Chinese Journal of Luminescence, 2022,43(1):8-25.
胡强, 白雪, 宋宏伟. 稀土离子掺杂钙钛矿纳米晶的光学性质和应用[J]. 发光学报, 2022,43(1):8-25. DOI: 10.37188/CJL.20210330.
Qiang HU, Xue BAI, Hong-wei SONG. Rare Earth Ion Doped Perovskite Nanocrystals[J]. Chinese Journal of Luminescence, 2022,43(1):8-25. DOI: 10.37188/CJL.20210330.
近年来,钙钛矿纳米晶由于具有优异的光电性质,在发光、光电转换等领域获得了广泛的研究,已然成为科研界的“明星材料”。然而,钙钛矿纳米晶存在一些不足之处(例如稳定性差、光谱仅限于可见光区等),限制了其应用。稀土离子具有丰富的4f能级和特殊的电子构型,因此,将稀土离子掺杂到钙钛矿纳米晶中,能够显著提升材料的光电性质,并改善稳定性,解决钙钛矿纳米晶面向实际应用需求的关键问题。本文详细介绍了稀土掺杂钙钛矿纳米晶的性质,重点对材料在发光二极管、太阳能电池以及光电探测器等多个方面的应用实例进行了总结与展望。
In recent years
due to their excellent photoelectric properties
perovskite nanocrystals have been extensively studied in the fields of luminescence and photoelectric conversion
and they have become "star materials" in scientific research circles. However
perovskite nanocrystals have some shortcomings(such as poor stability
the spectrum is limited to the visible light region
etc
.)
which limit their application. Rare earth ions have abundant 4f energy levels and special electronic configurations. Therefore
doping rare earth ions into perovskite nanocrystals can significantly improve the photoelectric properties of the material
improve the stability
and solve the key problem of the perovskite nanocrystals for practical application requirements. We introduce the properties of rare earth-doped perovskite nanocrystals
and focus on the application of materials in light-emitting diodes
solar cells
and photodetectors
respectively.
钙钛矿纳米晶稀土掺杂发光
perovskitenanocrystalsrare earthdopingluminescence
ZHANG X Y, LIN H, HUANG H, et al. Enhancing the brightness of cesium lead halide perovskite nanocrystal based green light-emitting devices through the interface engineering with perfluorinated ionomer[J]. Nano Lett., 2016, 16(2): 1415-1420.
ZHANG Y H, SUN R J, OU X Y, et al. Metal halide perovskite nanosheet for X-ray high-resolution scintillation imaging screens[J]. ACS Nano, 2019, 13(2): 2520-2525.
PAN J, SARMAH S P, MURALI B, et al. Air-stable surface-passivated perovskite quantum dots for ultra-robust, single- and two-photon-induced amplified spontaneous emission[J]. J. Phys. Chem. Lett., 2015, 6(24): 5027-5033.
LU M, ZHANG X Y, ZHANG Y, et al. Simultaneous strontium doping and chlorine surface passivation improve luminescence intensity and stability of CsPbI3 nanocrystals enabling efficient light-emitting devices[J]. Adv. Mater., 2018, 30(50): 1804691-1-6.
PAN J, SHANG Y Q, YIN J, et al. Bidentate ligand-passivated CsPbI3 perovskite nanocrystals for stable near-unity photoluminescence quantum yield and efficient red light-emitting diodes[J]. J. Am. Chem. Soc., 2018, 140(2): 562-565.
LU M, GUO J, SUN S Q, et al. Bright CsPbI3 perovskite quantum dot light-emitting diodes with top-emitting structure and a low efficiency roll-off realized by applying zirconium acetylacetonate surface modification[J]. Nano Lett., 2020, 20(4): 2829-2836.
AKKERMAN Q A, RAINÒ G, KOVALENKO M V, et al. Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals[J]. Nat. Mater., 2018, 17(5): 394-405.
ISAROV M, TAN L Z, BODNARCHUK M I, et al. Rashba effect in a single colloidal CsPbBr3 perovskite nanocrystal detected by magneto-optical measurements[J]. Nano Lett., 2017, 17(8): 5020-5026.
LU M, GUO J, SUN S Q, et al. Surface ligand engineering-assisted CsPbI3 quantum dots enable bright and efficient red light-emitting diodes with a top-emitting structure[J]. Chem. Eng. J., 2021, 404: 126563-1-7.
GAO Y B, WU Y J, LU H B, et al. CsPbBr3 perovskite nanoparticles as additive for environmentally stable perovskite solar cells with 20.46% efficiency[J]. Nano Energy, 2019, 59: 517-526.
CHEN Q S, WU J, OU X Y, et al. All-inorganic perovskite nanocrystal scintillators[J]. Nature, 2018, 561(7721): 88-93.
GAO Y B, WU Y J, LIU Y, et al. Interface and grain boundary passivation for efficient and stable perovskite solar cells: the effect of terminal groups in hydrophobic fused benzothiadiazole-based organic semiconductors[J]. Nanoscale Horiz., 2020, 5(12): 1574-1585.
SAHA R, SUNDARESAN A, RAO C N R. Novel features of multiferroic and magnetoelectric ferrites and chromites exhibiting magnetically driven ferroelectricity[J]. Mater. Horiz., 2014, 1(1): 20-31.
ZHANG Y, JIE W J, CHEN P, et al. Ferroelectric and piezoelectric effects on the optical process in advanced materials and devices[J]. Adv. Mater., 2018, 30(34): 1707007-1-35.
曾海波, 董宇辉. 钙钛矿量子点:机遇与挑战[J]. 发光学报, 2020, 41(8): 940-944.
ZENG H B, DONG Y H. Perovskite quantum dots: opportunities and challenges[J]. Chin. J. Lumin., 2020, 41(8): 940-944. (in Chinese)
SWARNKAR A, MIR W J, NAG A. Can B-site doping or alloying improve thermal- and phase-stability of all-inorganic CsPbX3 (X=CI,Br,I) perovskites?[J]. ACS Energy Lett., 2018, 3(2): 286-289.
LI Y H, WANG Y, ZHANG T Y, et al. Li dopant induces moisture sensitive phase degradation of an all-inorganic CsPbI2Br perovskite[J]. Chem. Commun., 2018, 54(70): 9809-9812.
TANG X S, ZU Z Q, SHAO H B, et al. All-inorganic perovskite CsPb(Br/I)3 nanorods for optoelectronic application[J]. Nanoscale, 2016, 8(33): 15158-15161.
MIAO X L, QIU T, ZHANG S F, et al. Air-stable CsPb1-xBixBr3 (0<=x<<1) perovskite crystals: optoelectronic and photostriction properties[J]. J. Mater. Chem. C, 2017, 5(20): 4931-4939.
LIU C, LI W Z, LI H Y, et al. Structurally reconstructed CsPbI2Br perovskite for highly stable and square-centimeter all-inorganic perovskite solar cells[J]. Adv. Energy Mater., 2019, 9(7): 1803572-1-9.
BYUN J, CHO H, WOLF C, et al. Efficient visible quasi-2D perovskite light-emitting diodes[J]. Adv. Mater., 2016, 28(34): 7515-7520.
SWARNKAR A, CHULLIYIL R, RAVI V K, et al. Colloidal CsPbBr3 perovskite nanocrystals: luminescence beyond traditional quantum dots[J]. Angew. Chem. Int. Ed., 2015, 54(51): 15424-15428.
SONG J Z, LI J H, LI X M, et al. Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3)[J]. Adv. Mater., 2015, 27(44): 7162-7167.
XU K Y, MEIJERINK A. Tuning exciton-Mn2+ energy transfer in mixed halide perovskite nanocrystals[J]. Chem. Mater., 2018, 30(15): 5346-5352.
LIANG J, LIU Z H, QIU L B, et al. Enhancing optical, electronic, crystalline, and morphological properties of cesium lead halide by Mn substitution for high-stability all-inorganic perovskite solar cells with carbon electrodes[J]. Adv. Energy Mater., 2018, 8(20): 1800504-1-7.
GRANCINI G, ROLDAN-CARMONA C, ZIMMERMANN I, et al. One-year stable perovskite solar cells by 2D/3D interface engineering[J]. Nat. Commun., 2017, 8: 15684-1-8.
郭洁, 陆敏, 孙思琪, 等. 基于CsPbBr3钙钛矿量子点的高柔性绿光发光二极管[J]. 发光学报, 2020, 41(3): 233-240.
GUO J, LU M, SUN S Q, et al. Highly flexible green light-emitting diode based on CsPbBr3 perovskite quantum dots[J]. Chin. J. Lumin., 2020, 41(3): 233-240. (in Chinese)
SHEN X Y, ZHANG Y, KERSHAW S V, et al. Zn-alloyed CsPbI3 nanocrystals for highly efficient perovskite light-emitting devices[J]. Nano Lett., 2019, 19(3): 1552-1559.
HE L J, MENG J L, FENG J, et al. Unveiling the mechanism of rare earth doping to optimize the optical performance of the CsPbBr3 perovskite[J]. Inorg. Chem. Front., 2020, 7(23): 4669-4676.
ZHAO H Y, XIA J L, YIN D D, et al. Rare earth incorporated electrode materials for advanced energy storage[J]. Coord. Chem. Rev., 2019, 390: 32-49.
SUN C T, LI K Y, XUE D F. Searching for novel materials via 4f chemistry[J]. J. Rare Earths, 2019, 37(1): 1-10.
MIR W J, SHEIKH T, ARFIN H, et al. Lanthanide doping in metal halide perovskite nanocrystals: spectral shifting, quantum cutting and optoelectronic applications[J]. NPG Asia Mater., 2020, 12(1): 9-1-9.
QIU J B, JIAO Q, ZHOU D C, et al. Recent progress on upconversion luminescence enhancement in rare-earth doped transparent glass-ceramics[J]. J. Rare Earths, 2016, 34(4): 341-367.
WANG Y G, LI P, WANG S F, et al. Recent progress in luminescent materials based on lanthanide complexes intercalated synthetic clays[J]. J. Rare Earths, 2019, 37(5): 451-467.
PAN G C, BAI X, YANG D W, et al. Doping lanthanide into perovskite nanocrystals: highly improved and expanded optical properties[J]. Nano Lett., 2017, 17(12): 8005-8011.
LUO X, DING T, LIU X, et al. Quantum-cutting luminescent solar concentrators using ytterbium-doped perovskite nanocrystals[J]. Nano Lett., 2019, 19(1): 338-341.
LI X Y, DUAN S, LIU H C, et al. Mechanism for the extremely efficient sensitization of Yb3+luminescence in CsPbCl3 nanocrystals[J]. J. Phys. Chem. Lett., 2019, 10(3): 487-492.
MIR W J, MAHOR Y, LOHAR A, et al. Postsynthesis doping of Mn and Yb into CsPbX3 (X=Cl,Br,or I) perovskite nanocrystals for downconversion emission[J]. Chem. Mater., 2018, 30(22): 8170-8178.
HU Q S, LI Z, TAN Z F, et al. Rare earth ion-doped CsPbBr3 nanocrystals[J]. Adv. Opt. Mater., 2018, 6(2): 1700864-1-5.
DUAN J L, ZHAO Y Y, YANG X Y, et al. Lanthanide ions doped CsPbBr3 halides for HTM-free 10.14%-efficiency inorganic perovskite solar cell with an ultrahigh open-circuit voltage of 1.594 V[J]. Adv. Energy Mater., 2018, 8(31): 1802346-1-9.
ZENG Z C, XU Y S, ZHANG Z S, et al. Rare-earth-containing perovskite nanomaterials: design, synthesis, properties and applications[J]. Chem. Soc. Rev., 2020, 49(4): 1109-1143.
ZHAO J, MEI D J, WANG W K, et al. Recent advances in nonlinear optical rare earth structures[J]. J. Rare Earths, 2021, 39(12): 1455-1466.
SHEN Z H, QIAO B, XU Z, et al. The luminescence properties of CsPbxM1-xBr3 perovskite nanocrystals transformed from Cs4PbBr6 mediated by various divalent bromide MBr2 salts[J]. Nanoscale, 2019, 11(9): 4008-4014.
ZHOU D L, LIU D L, PAN G C, et al. Cerium and ytterbium codoped halide perovskite quantum dots: a novel and efficient downconverter for improving the performance of silicon solar cells[J]. Adv. Mater., 2017, 29(42): 1704149-1-6.
曾志超, 张宏图, 杜亚平. 稀土钙钛矿纳米材料的可控合成进展[J]. 中国科学:化学, 2020, 50(11): 1486-1503.
ZENG Z C, ZHANG H T, DU Y P. Progress of controllable synthesis of rare-earth containing perovskite nano-materials[J]. Sci. Sinica Chim., 2020, 50(11): 1486-1503. (in Chinese)
WANG R, MUJAHID M, DUAN Y, et al. A review of perovskites solar cell stability[J]. Adv. Funct. Mater., 2019, 29(47): 1808843-1-25.
宋宏伟, 徐文. 钙钛矿发光-光电器件中的光谱调控[J]. 发光学报, 2021, 42(5): 575-579.
SONG H W, XU W. Spectra control of perovskite luminescence and optoelectronic devices[J]. Chin. J. Lumin., 2021, 42(5): 575-579. (in Chinese)
练惠旺, 康茹, 陈星中, 等. 全无机钙钛矿CsPbX3热稳定性研究进展[J]. 发光学报, 2020, 41(8): 926-939.
LIAN H W, KANG R, CHEN X Z, et al. Research progress on thermal stability of all inorganic perovskite CsPbX3[J]. Chin. J. Lumin., 2020, 41(8): 926-939. (in Chinese)
LIU X G, YAN C H, CAPOBIANCO J A. Photon upconversion nanomaterials[J]. Chem. Soc. Rev., 2015, 44(6): 1299-1301.
ZHOU L, YU K, YANG F, et al. Insight into the effect of ligand-exchange on colloidal CsPbBr3 perovskite quantum dot/mesoporous-TiO2 composite-based photodetectors: much faster electron injection[J]. J. Mater. Chem. C, 2017, 5(25): 6224-6233.
ZHAI Y, BAI X, PAN G C, et al. Effective blue-violet photoluminescence through lanthanum and fluorine ions co-doping for CsPbCl3 perovskite quantum dots[J]. Nanoscale, 2019, 11(5): 2484-2491.
CHENG Y Z, SHEN C Y, SHEN L L, et al. Tb3+,Eu3+ Co-doped CsPbBr3 QDs glass with highly stable and luminous adjustable for white LEDs[J]. ACS Appl. Mater. Interfaces, 2018, 10(25): 21434-21444.
YAO J S, GE J, HAN B N, et al. Ce3+-doping to modulate photoluminescence kinetics for efficient CsPbBr3 nanocrystals based light-emitting diodes[J]. J. Am. Chem. Soc., 2018, 140(10): 3626-3634.
BARTEL C J, SUTTON C, GOLDSMITH B R, et al. New tolerance factor to predict the stability of perovskite oxides and halides[J]. Sci. Adv., 2019, 5(2): eaav0693-1-10.
TRAVIS W, GLOVER E N K, BRONSTEIN H, et al. On the application of the tolerance factor to inorganic and hybrid halide perovskites: a revised system[J]. Chem. Sci., 2016, 7(7): 4548-4556.
YIN W J, WENG B C, GE J, et al. Oxide perovskites, double perovskites and derivatives for electrocatalysis, photocatalysis, and photovoltaics[J]. Energy Environ. Sci., 2019, 12(2): 442-462.
ZHOU C K, LIN H R, NEU J, et al. Green emitting single-crystalline bulk assembly of metal halide clusters with near-unity photoluminescence quantum efficiency[J]. ACS Energy Lett., 2019, 4(7): 1579-1583.
ROGHABADI F A, ALIDAEI M, MOUSAVI S M, et al. Stability progress of perovskite solar cells dependent on the crystalline structure: from 3D ABX3 to 2D ruddlesden-popper perovskite absorbers[J]. J. Mater. Chem. A, 2019, 7(11): 5898-5933.
ETGAR L. The merit of perovskite's dimensionality; can this replace the 3D halide perovskite?[J]. Energy Environ. Sci., 2018, 11(2): 234-242.
CHEN Y N, SUN Y, PENG J J, et al. 2D ruddlesden-popper perovskites for optoelectronics[J]. Adv. Mater., 2018, 30(2): 1703487-1-15.
GRANCINI G, NAZEERUDDIN M K. Dimensional tailoring of hybrid perovskites for photovoltaics[J]. Nat. Rev. Mater., 2019, 4(1): 4-22.
GUSOWSKI M A, DOMINIAK-DZIK G, SOLARZ P, et al. Luminescence and energy transfer in K3GdF6∶Pr3+[J]. J. Alloys Compd., 2007, 438(1-2): 72-76.
MOURE C, PEÑA O. Recent advances in perovskites: processing and properties[J]. Prog. Solid State Chem., 2015, 43(4): 123-148.
ZHU Y L, ZHOU W, SHAO Z P. Perovskite/carbon composites: applications in oxygen electrocatalysis[J]. Small, 2017, 13(12): 1603793-1-25.
LI Z Z, XU Q C, SUN Q D, et al. Thermodynamic stability landscape of halide double perovskites via high-throughput computing and machine learning[J]. Adv. Funct. Mater., 2019, 29(9): 1807280-1-9.
WEI Y, CHENG Z Y, LIN J. An overview on enhancing the stability of lead halide perovskite quantum dots and their applications in phosphor-converted LEDs[J]. Chem. Soc. Rev., 2019, 48(1): 310-350.
LIU X H, YU D J, SONG X F, et al. Metal halide perovskites: synthesis, ion migration, and application in field-effect transistors[J]. Small, 2018, 14(36): 1801460-1-20.
YANG B, HONG F, CHEN J S, et al. Colloidal synthesis and charge-carrier dynamics of Cs2AgSb1-yBiyX6(X:Br,Cl;0<=y<=1) double perovskite nanocrystals[J]. Angew. Chem. Int. Ed., 2019, 58(8): 2278-2283.
FAN Q Q, BIESOLD-MCGEE G V, MA J Z, et al. Lead-free halide perovskite nanocrystals: crystal structures, synthesis, stabilities, and optical properties[J]. Angew. Chem. Int. Ed., 2020, 59(3): 1030-1046.
DONG H, DU S R, ZHENG X Y, et al. Lanthanide nanoparticles: from design toward bioimaging and therapy[J]. Chem. Rev., 2015, 115(19): 10725-10815.
QIN X, LIU X W, HUANG W, et al. Lanthanide-activated phosphors based on 4f-5d optical transitions: theoretical and experimental aspects[J]. Chem. Rev., 2017, 117(5): 4488-4527.
AGBO P, ABERGELR J. Ligand-sensitized lanthanide nanocrystals: mergingsolid-state photophysics and molecular solution chemistry[J]. Inorg. Chem., 2016, 55(20): 9973-9980.
DING S W, LU L F, FAN Y, et al. Recent progress in NIR-Ⅱ emitting lanthanide-based nanoparticles and their biological applications[J]. J. Rare Earths, 2020, 38(5): 451-463.
PAN G C, BAI X, XU W, et al. Impurity ions codoped cesium lead halide perovskite nanocrystals with bright white light emission toward ultraviolet-white light-emitting diode[J]. ACS Appl. Mater. Interfaces, 2018, 10(45): 39040-39048.
MILSTEIN T J, KROUPA D M, GAMELIN D R. Picosecond quantum cutting generates photoluminescence quantum yields over 100% in ytterbium-doped CsPbCl3 nanocrystals[J]. Nano Lett., 2018, 18(6): 3792-3799.
KROUPA D M, ROH J Y, MILSTEIN T J, et al. Quantum-cutting ytterbium-doped CsPb(Cl1-xBrx)3 perovskite thin films with photoluminescence quantum yields over 190%[J]. ACS Energy Lett., 2018, 3(10): 2390-2395.
LI Q Q, LIU Y F, CHEN P, et al. Excitonic luminescence engineering in tervalent-europium-doped cesium lead halide perovskite nanocrystals and their temperature-dependent energy transfer emission properties[J]. J. Phys. Chem. C, 2018, 122(50): 29044-29050.
SUN R, LU P, ZHOU D L, et al. Samarium-doped metal halide perovskite nanocrystals for single-component electroluminescent white light-emitting diodes[J]. ACS Energy Lett., 2020, 5(7): 2131-2139.
CHIBA T, SATO J, ISHIKAWA S, et al. Neodymium chloride-doped perovskite nanocrystals for efficient blue light-emitting devices[J]. ACS Appl. Mater. Interfaces, 2020, 12(48): 53891-53898.
XIANG W C, WANG Z W, KUBICKI D J, et al. Europium-doped CsPbI2Br for stable and highly efficient inorganic perovskite solar cells[J]. Joule, 2019, 3(1): 205-214.
XIE Y J, PENG B, BRAVIĆ I, et al. Highly efficient blue-emitting CsPbBr3 perovskite nanocrystals through neodymium doping[J]. Adv. Sci., 2020, 7(20): 2001698-1-9.
LI B, ANNADURAI G, SUN L L, et al. High-efficiency cubic-phased blue-emitting Ba3Lu2B6O15∶Ce3+ phosphors for ultraviolet-excited white-light-emitting diodes[J]. Opt. Lett., 2018, 43(20): 5138-5141.
EPERON G E, PATERNO G M, SUTTON R J, et al. Inorganic caesium lead iodide perovskite solar cells[J]. J. Mater. Chem. A, 2015, 3(39): 19688-19695.
KULBAK M, CAHEN D, HODES G. How important is the organic part of lead halide perovskite photovoltaic cells? Efficient CsPbBr3 cells[J]. J. Phys. Chem. Lett., 2015, 6(13): 2452-2456.
BEAL R E, SLOTCAVAGE D J, LEIJTENS T, et al. Cesium lead halide perovskites with improved stability for tandem solar cells[J]. J. Phys. Chem. Lett., 2016, 7(5): 746-751.
LV W Z, LI L, XU M C, et al. Improving the stability of metal halide perovskite quantum dots by encapsulation[J]. Adv. Mater., 2019, 31(28): 1900682-1-28.
WANG L G, ZHOU H P, HU J N, et al. A Eu3+-Eu2+ ion redox shuttle imparts operational durability to Pb-I perovskite solar cells[J]. Science, 2019, 363(6424): 265-270.
ZHANG X T, ZHANG Y, ZHANG X Y, et al. Yb3+ and Yb3+/Er3+ doping for near-infrared emission and improved stability of CsPbCl3 nanocrystals[J]. J. Mater. Chem. C, 2018, 6(37): 10101-10105.
WANG K, ZHENG L Y, ZHU T, et al. Efficient perovskite solar cells by hybrid perovskites incorporated with heterovalent neodymium cations[J]. Nano Energy, 2019, 61: 352-360.
SHI J W, LI F C, YUAN J Y, et al. Efficient and stable CsPbI3 perovskite quantum dots enabled by in situ ytterbium doping for photovoltaic applications[J]. J. Mater. Chem. A, 2019, 7(36): 20936-20944.
JENA A K, KULKARNI A, SANEHIRA Y, et al. Stabilization of α-CsPbI3 in ambient room temperature conditions by incorporating Eu into CsPbI3[J]. Chem. Mater., 2018, 30(19): 6668-6674.
CRANE M J, KROUPA D M, GAMELIN D R. Detailed-balance analysis of Yb3+∶CsPb(Cl1-xBrx)3 quantum-cutting layers for high-efficiency photovoltaics under real-world conditions[J]. Energy Environ. Sci., 2019, 12(8): 2486-2495.
WU K F, LI H B, KLIMOV V I. Tandem luminescent solar concentrators based on engineered quantum dots[J]. Nat. Photonics, 2018, 12(2): 105-110.
LIU Y C, YE H C, ZHANG Y X, et al. Surface-tension-controlled crystallization for high-quality 2D perovskite single crystals for ultrahigh photodetection[J]. Matter, 2019, 1(2): 465-480.
LI D Y, ZHOU D L, XU W, et al. Plasmonic photonic crystals induced two-order fluorescence enhancement of blue perovskite nanocrystals and its application for high-performance flexible ultraviolet photodetectors[J]. Adv. Funct. Mater., 2018, 28(41): 1804429-1-10.
ZOU T Y, LIU X Y, QIU R Z, et al. Enhanced UV-C detection of perovskite photodetector arrays via inorganic CsPbBr3 quantum dot down-conversion layer[J]. Adv. Opt. Mater., 2019, 7(11): 1801812-1-8.
DING N, ZHOU D L, PAN G C, et al. Europium-doped lead-free Cs3Bi2Br9 perovskite quantum dots and ultrasensitive Cu2+ detection[J]. ACS Sustainable Chem. Eng., 2019, 7(9): 8397-8404.
DING N, XU W, ZHOU D L, et al. Upconversion ladder enabled super-sensitive narrowband near-infrared photodetectors based on rare earth doped florine perovskite nanocrystals[J]. Nano Energy, 2020, 76: 105103-1-9.
0
浏览量
908
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构