浏览全部资源
扫码关注微信
1.南阳师范学院 物理与电子工程学院,河南省MXene材料微结构国际联合实验室,河南 南阳 473061
2.吉林大学 物理学院,吉林 长春 130012
[ "于荣梅(1982-),女,山东烟台人,博士,副教授,2012年于哈尔滨工业大学获得博士学位,主要从事量子点发光器件的研究。E-mail: yurongmei@aliyun.com" ]
[ "纪文宇(1982-),男,黑龙江海伦人,博士,教授,2010年于吉林大学获得博士学位,主要从事半导体纳米材料(量子点)薄膜物理、发光器件的研究。E-mail: jiwy@jlu.edu.cn" ]
纸质出版日期:2022-01,
收稿日期:2021-10-13,
修回日期:2021-10-26,
移动端阅览
于荣梅, 濮春英, 殷复荣, 等. 超低效率滚降顶发射白光有机电致发光器件[J]. 发光学报, 2022,43(1):77-84.
RONG-MEI YU, CHUN-YING PU, FU-RONG YIN, et al. Ultra-low Efficiency Roll-off Top-emitting White Organic Light-emitting Diodes. [J]. Chinese journal of luminescence, 2022, 43(1): 77-84.
于荣梅, 濮春英, 殷复荣, 等. 超低效率滚降顶发射白光有机电致发光器件[J]. 发光学报, 2022,43(1):77-84. DOI: 10.37188/CJL.20210325.
RONG-MEI YU, CHUN-YING PU, FU-RONG YIN, et al. Ultra-low Efficiency Roll-off Top-emitting White Organic Light-emitting Diodes. [J]. Chinese journal of luminescence, 2022, 43(1): 77-84. DOI: 10.37188/CJL.20210325.
利用Ag/tris-(8-hydroxyquinoline) aluminum(Alq
3
)/Ag/Alq
3
/Ag这一金属/有机半导体多层结构作为阳极,实现了超低效率滚降的顶发射白光器件。在该器件中,我们在蓝光和橙光发光单元之间引入一个薄的4
4'-bis(9-carbazolyl)-2
2'-biphenyl(CBP)层,从而减少橙光发光层与蓝光发光层的Dexter能量传递,用以改善白光器件发光光谱及效率。通过优化微腔设计,实现了对橙光磷光材料发射的调控。最终,我们获得了在60 000 cd/m
2
亮度下效率滚降仅为17%的顶发射白光器件。在效率方面,虽然顶发射白光器件与底发射白光器件不相上下,但由于微腔效应的存在,顶发射白光器件的效率滚降却远低于底发射白光器件的效率滚降。
White top-emitting organic light-emitting devices(TEOLEDs) with very low efficiency roll-off are obtained by utilizing Ag/Alq
3
/Ag/Alq
3
/Ag as an anode. A neat bipolar transport 4
4'-bis(9-carbazolyl)-2
2'-biphenyl(CBP) layer is introduced between the blue fluorescent and the orange phosphorescent emission layers in order to reduce the Dexter energy transfer between the two emissive units
which can improve the emission spectrum and device efficiency. The yellow emission from bis(2-(2-fluorphenyl)-1
3-benzothiozolato-N
C2') iridium(acetylacetonate) is manipulated by optimizing the microcavity effect of the TEOLED. As a result
we demonstrate that a very low roll-off of 17% for the current efficiency can be obtained at a super high luminance of 60 000 cd/m
2
. The efficiencies of the white TEOLEDs are comparable to those of the corresponding conventional bottom-emitting OLED. In comparison
the efficiency roll-off of the TEOLEDs is much lower than that of the corresponding conventional bottom-emitting device due to the microcavity effects.
有机发光器件顶发射微腔效应效率滚降
organic light-emitting devicestop-emittingmicrocavity effectefficiency roll-off
AL-ASBAHI B A. Dual Förster resonance energy transfer in ternary PFO/MEH-PPV/F7GA hybrid thin films for white organic light-emitting diodes[J]. Dyes Pigments, 2021, 186: 109011.
LEE H. Phosphorescent white organic light-emitting diodes with stable white color depending on luminance[J]. Curr. Appl. Phys., 2021, 21: 116-120.
MAHORO G U, FERNANDEZ-CESTAU J, RENAUD J L, et al. Recent advances in solid-state lighting devices using transition metal complexes exhibiting thermally activated delayed fluorescent emission mechanism[J]. Adv. Opt. Mater., 2020, 8(16): 2000260-1-36.
LIU H, LIU F T, LU P. Multiple strategies towards high-efficiency white organic light-emitting diodes by the vacuum deposition method[J]. J. Mater. Chem. C, 2020, 8(17): 5636-5661.
WANG Z H, SU S J. Molecular and device design strategies for ideal performance white organic light-emitting diodes[J]. Chem. Rec., 2019, 19(8): 1518-1530.
REINEKE S, LINDNER F, SCHWARTZ G, et al. White organic light-emitting diodes with fluorescent tube efficiency[J]. Nature, 2009, 459(7244): 234-238.
DING L, SUN Y Q, CHEN H, et al. A novel intermediate connector with improved charge generation and separation for large-area tandem white organic lighting devices[J]. J. Mater. Chem. C, 2014, 2(48): 10403-10408.
YING S A, SUN Q, DAI Y F, et al. Precise regulation of the emissive layer for ultra-high performance white organic light-emitting diodes in an exciplex forming co-host system[J]. Mater. Chem. Front., 2019, 3(4): 640-649.
OU Q D, ZHOU L, LI Y Q, et al. Extremely efficient white organic light-emitting diodes for general lighting[J]. Adv. Funct. Mater., 2014, 24(46): 7249-7256.
DU M X, FENG Y S, ZHU D X, et al. Novel emitting system based on a multifunctional bipolar phosphor: an effective approach for highly efficient warm-white light-emitting devices with high color-rendering index at high luminance[J]. Adv. Mater., 2016, 28(28): 5963-5968.
XU Z, GU J B, QIAO X F, et al. Highly efficient deep blue aggregation-induced emission organic molecule: a promising multifunctional electroluminescence material for blue/green/orange/red/white OLEDs with superior efficiency and low roll-off[J]. ACS Photonics, 2019, 6(3): 767-778.
LIU F T, LIU H, TANG X Y, et al. Novel blue fluorescent materials for high-performance nondoped blue OLEDs and hybrid pure white OLEDs with ultrahigh color rendering index[J]. Nano Energy, 2020, 68: 104325.
JEON Y P, KONG B K, LEE E J, et al. Ultrahighly-efficient and pure deep-blue thermally activated delayed fluorescence organic light-emitting devices based on dimethylacridine/thioxanthene-S,S-dioxide[J]. Nano Energy, 2019, 59: 560-568.
OHISA S, TAKAHASHI T, IGARASHI M, et al. An indolocarbazole-based thermally activated delayed fluorescence host for solution-processed phosphorescent tandem organic light-emitting devices exhibiting extremely small efficiency roll-off[J]. Adv. Funct. Mater., 2019, 29(16): 1808022-1-10.
ZHANG S, YAO J W, DAI Y F, et al. High efficiency and color quality undoped phosphorescent white organic light-emitting diodes based on simple ultrathin structure in exciplex[J]. Org. Electron., 2020, 85: 105821-1-7.
CHEN Y W, YANG D Z, QIAO X F, et al. Novel strategy to improve the efficiency roll-off at high luminance and operational lifetime of hybrid white OLEDs via employing an assistant layer with triplet-triplet annihilation up-conversion characteristics[J]. J. Mater. Chem. C, 2020, 8(19): 6577-6586.
ZHANG X, PAN T, ZHANG J X, et al. Color-tunable, spectra-stable flexible white top-emitting organic light-emitting devices based on alternating current driven and dual-microcavity technology[J]. ACS Photonics, 2019, 6(9): 2350-2357.
YIN M J, YU Z W, PAN T, et al. Efficient and angle-stable white top-emitting organic light emitting devices with patterned quantum dots down-conversion films[J]. Org. Electron., 2018, 56: 46-50.
DONG C, FU X Y, CAO L Y, et al. Multi-mode organic light-emitting diode to suppress the viewing angle dependence[J]. ACS Appl. Mater. Interfaces, 2020, 12(28): 31667-31676.
KIM S K, PARK M J, LAMPANDE R, et al. Primary color generation from white organic light-emitting diodes using a cavity control layer for AR/VR applications[J]. Org. Electron., 2020, 87: 105938-1-8.
BALDO M A, ADACHI C, FORREST S R. Transient analysis of organic electrophosphorescence. Ⅱ. Transient analysis of triplet-triplet annihilation[J]. Phys. Rev. B, 2000, 62(16): 10967-1-11.
REINEKE S, WALZER K, LEO K. Triplet-exciton quenching in organic phosphorescent light-emitting diodes with Ir-based emitters[J]. Phys. Rev. B, 2007, 75(12): 125328-1-13.
CHEN P, XIE W F, LI J, et al. White organic light-emitting devices with a bipolar transport layer between blue fluorescent and orange phosphorescent emitting layers[J]. Appl. Phys. Lett., 2007, 91(2): 023505-1-3.
DJURIŠIĆ A B, RAKIĆ A D. Organic microcavity light-emitting diodes with metal mirrors: dependence of the emission wavelength on the viewing angle[J]. Appl. Opt., 2002, 41(36): 7650-7656.
FREITAG P, REINEKE S, OLTHOF S, et al. White top-emitting organic light-emitting diodes with forward directed emission and high color quality[J]. Org. Electron., 2010, 11(10): 1676-1682.
0
浏览量
271
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构