浏览全部资源
扫码关注微信
青岛大学 电子信息学院,山东 青岛 266071
[ "易凌俊(1994-),男,河南南阳人,硕士研究生,2018年于南阳理工学院获得学士学位,主要从事光子晶体光学器件等方面的研究。E-mail: photoniccrystal@163.com" ]
[ "李长红(1973-),女,山东兖州人,博士,副教授,硕士生导师,2008年于北京邮电大学获得博士学位,主要从事宽带通信网、光信息处理、光子晶体器件、纳米光子学以及太阳能收集等方面的研究。E-mail: jiluch@126.com" ]
纸质出版日期:2022-01,
收稿日期:2021-10-11,
修回日期:2021-10-29,
扫 描 看 全 文
易凌俊, 李长红. 基于宇称时间对称结构实现石墨烯光增强吸收[J]. Chinese Journal of Luminescence, 2022,43(1):119-128.
Ling-jun YI, Chang-hong LI. Light Enhanced Absorption of Graphene Based on Parity-time Symmetry Structure[J]. 发光学报, 2022,43(1):119-128.
易凌俊, 李长红. 基于宇称时间对称结构实现石墨烯光增强吸收[J]. Chinese Journal of Luminescence, 2022,43(1):119-128. DOI: 10.37188/CJL.20210322.
Ling-jun YI, Chang-hong LI. Light Enhanced Absorption of Graphene Based on Parity-time Symmetry Structure[J]. 发光学报, 2022,43(1):119-128. DOI: 10.37188/CJL.20210322.
为增强石墨烯对近红外通信波段光波的吸收,提出了一种基于周期性宇称-时间(Parity-time)对称结构的石墨烯基吸收器,该结构由顶层的石墨烯层和底层周期性PT对称单元构成. 采用传输矩阵方法系统地研究了该结构中石墨烯对1 450~1 650 nm波长范围内光波的吸收特性. 结果表明,通过优化石墨烯复合PT对称微纳结构参数,对于所研究波长范围内垂直入射的近红外光波,单层石墨烯的平均吸收增强了35倍. 同时,对入射角在0°~30°范围内的光波,结构对TE极化波和TM极化波的平均吸收分别增强了19.7倍和54倍. 该结构对近红外通信波段光波具有高强度吸收特性,可广泛用于吸收器、光电探测器和红外光学传感器等器件的设计.
To enhance the absorption of graphene for optical waves in near-infrared communication wavelengths
a graphene-based absorber based on a periodic parity-time(PT) symmetry structure was proposed
which consists of the top graphene layer and the underlying periodic PT-symmetry unit. The absorption properties of graphene in the wavelength range of 1 450-1 650 nm are systematically studied by the transfer matrix method(TMM). The results show that by optimizing the graphene composite PT-symmetry micronano structure parameters
a 35-fold absorptance enhancement was achieved for the normal incidence near-infrared light in the studied wavelength range as compared to the free-standing graphene absorption. Meanwhile
for the oblique incidence near-infrared light with angle ranging from 0° to 30°
the average absorptance of the TE and TM polarization light is also enhanced by 19.7 and 54 folds
respectively. The structure has high-intensity absorption characteristics for the near-infrared light
which can be widely used in the design of devices such as absorbers
photodetectors and infrared optical sensors.
宇称时间对称石墨稀近红外传输矩阵
parity-time symmetrygraphenenear-infraredtransfer matrix method
SAFAEI A, CHANDRA S, LEUENBERGER M N, et al. Wide angle dynamically tunable enhanced infrared absorption on large-area nanopatterned graphene[J]. ACS Nano, 2019, 13(1): 421-428.
CHEN J, CHEN S Y, GU P, et al. Electrically modulating and switching infrared absorption of monolayer graphene in metamaterials[J]. Carbon, 2020, 162: 187-194.
LU H, GAN X T, JIA B H, et al. Tunable high-efficiency light absorption of monolayer graphene via Tamm plasmon polaritons[J]. Opt. Lett., 2016, 41(20): 4743-4746.
黎永前, 苏磊, 王斌斌, 等. 红外波段十字阵列光吸收材料光学特性研究[J]. 光学学报, 2014, 34(1): 0123002-1-7.
LI Y Q, SU L, WANG B B, et al. Optical properties of cross-shaped array optical absorber in the infrared region[J]. Acta Opt. Sinica, 2014, 34(1): 0123002-1-7. (in Chinese)
GUO C C, ZHANG J F, XU W, et al. Graphene-based perfect absorption structures in the visible to terahertz band and their optoelectronics applications[J]. Nanomaterials, 2018, 8(12): 1033-1-20.
LIU J T, LIU N H, LI J, et al. Enhanced absorption of graphene with one-dimensional photonic crystal[J]. Appl. Phys. Lett., 2012, 101(5): 052104-1-3.
PERES N M R, BLUDOV Y V. Enhancing the absorption of graphene in the terahertz range[J]. EPL, 2013, 101(5): 58002-1-5.
VINCENTI M A, DE CEGLIA D, GRANDE M, et al. Nonlinear control of absorption in one-dimensional photonic crystal with graphene-based defect[J]. Opt. Lett., 2013, 38(18): 3550-3553.
LIU Y J, XIE X, XIE L, et al. Dual-band absorption characteristics of one-dimensional photonic crystal with graphene-based defect[J]. Optik, 2016, 127(9): 3945-3948.
WANG X, LIANG Y Z, WU L M, et al. Multi-channel perfect absorber based on a one-dimensional topological photonic crystal heterostructure with grapheme[J]. Opt. Lett., 2018, 43(17): 4256-4259.
高金霞, 兰云蕾, 武继江. 基于光子晶体异质结构的磁可调石墨烯多带吸收[J]. 发光学报, 2020, 41(5): 624-630.
GAO J X, LAN Y L, WU J J. Magnetically tunable multi-band absorption of graphene based on photonic crystal heterostructure[J]. Chin. J. Lumin., 2020, 41(5): 624-630. (in Chinese)
朱宇光, 方云团. 基于石墨烯和一维光子晶体复合结构实现可见光全波段吸收器[J]. 发光学报, 2019, 40(11): 1394-1400.
ZHU Y G, FANG Y T. Design of absorber at visible frequencies based on compound structure of one-dimensional photonic crystal and grapheme[J]. Chin. J. Lumin., 2019, 40(11): 1394-1400. (in Chinese)
WU J J, GAO J X. Wideband absorption in one dimensional bilayer-graphene embedded photonic multilayer structure[J]. Superlattice. Microst., 2020, 140: 106437-1-10.
KONOTOP V V, YANG J K, ZEZYULIN D A. Nonlinear waves in PT-symmetric systems[J]. Rev. Mod. Phys., 2016, 88(3): 035002-1-59.
NOVITSKY D V, SHALIN A S, NOVITSKY A. Nonlocal homogenization of PT-symmetric multilayered structures[J]. Phys. Rev. A, 2019, 99(4): 043812-1-7.
YI L J, LI C H. Simulation research on blood detection sensing with parity-time symmetry structure[J]. Crystals, 2021, 11(9): 1030-1-15.
NAZARI F, ABDOLLAHI S. PT-symmetric system based optical modulator[J]. Appl. Phys. B, 2018, 124(10): 197-1-6.
FANG Y T, ZHANG Y C, WANG J J. Resonance-dependent extraordinary reflection and transmission in PC-symmetric layered structure[J]. Opt. Commun., 2018, 407: 255-261.
DING S L, WANG G P. Extraordinary reflection and transmission with direction dependent wavelength selectivity based on parity-time-symmetric multilayers[J]. J. Appl. Phys., 2015, 117(2): 023104-1-4.
苏安, 蒙成举, 唐秀福, 等. 对称结构光子晶体的表面光学Tamm态[J]. 红外与激光工程, 2019, 48(8): 817001-1-7.
SU A, MENG C J, TANG X F, et al. Optical Tamm state on the surface of photonic crystal of symmetric structure[J]. Infrared Laser Eng., 2019, 48(8): 817001-1-7. (in Chinese)
EL-KHOZONDAR H J, MAHALAKSHMI P, EL-KHOZONDAR N R, et al. Design of one dimensional refractive index sensor using ternary photonic crystal waveguide for plasma blood samples applications[J]. Physica E Low-dimen. Syst. Nanostruct., 2019, 111: 29-36.
KLIMOV V I, MIKHAILOVSKY A A, XU S, et al. Optical gain and stimulated emission in nanocrystal quantum dots[J]. Science, 2000, 290(5490): 314-317.
DEKA J P, SARMA A K. Highly amplified light transmission in a parity-time symmetric multilayered structure[J]. Appl. Opt., 2018, 57(5): 1119-1126.
LIU Y H, CHADHA A, ZHAO D Y, et al. Approaching total absorption at near infrared in a large area monolayer graphene by critical coupling[J]. Appl. Phys. Lett., 2014, 105(18): 181105-1-4.
0
浏览量
109
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构