浏览全部资源
扫码关注微信
1.广东省晶体与激光技术工程研究中心,广东 广州 510632
2.暨南大学理工学院 光电工程系,广东 广州 510632
[ "廖家裕(1996-),女,广东广州人,硕士研究生,2019年于广州大学获得学士学位,主要从事激光与光电功能晶体材料的研究。E-mail: jyliao@stu2019.jnu.edu.cn" ]
[ "张沛雄(1987-),男,广东潮州人,博士,副研究员,2016年于中国科学院上海光学精密机械研究所获得博士学位,主要从事激光与光电功能晶体材料的研究。Email: pxzhang@jnu.edu.cn" ]
纸质出版日期:2021-12,
收稿日期:2021-09-28,
修回日期:2021-10-06,
扫 描 看 全 文
廖家裕, 陈鸿玲, 牛晓晨, 等. 新型中红外激光晶体Er3+/Ho3+/Eu3+∶PbF2的生长和性能[J]. 发光学报, 2021,42(12):1852-1862.
Jia-yu LIAO, Hong-ling CHEN, Xiao-chen NIU, et al. Growth and Properties of Novel Mid-infrared Laser Crystal Er3+ /Ho3+/Eu3+∶PbF2[J]. Chinese Journal of Luminescence, 2021,42(12):1852-1862.
廖家裕, 陈鸿玲, 牛晓晨, 等. 新型中红外激光晶体Er3+/Ho3+/Eu3+∶PbF2的生长和性能[J]. 发光学报, 2021,42(12):1852-1862. DOI: 10.37188/CJL.20210312.
Jia-yu LIAO, Hong-ling CHEN, Xiao-chen NIU, et al. Growth and Properties of Novel Mid-infrared Laser Crystal Er3+ /Ho3+/Eu3+∶PbF2[J]. Chinese Journal of Luminescence, 2021,42(12):1852-1862. DOI: 10.37188/CJL.20210312.
采用垂直布里奇曼法成功生长了Er
3+
/Ho
3+
/Eu
3+
三掺杂PbF
2
的中红外激光晶体。该晶体在980 nm泵浦下,首次获得了从2 600~3 200 nm的宽带中红外发光,其半高宽(FWHM)为300 nm,这是Er
3+
的2.7 μm发射峰(2 600~2 950 nm)和Ho
3+
的2.9 μm发射峰(2 800~3 200 nm)叠加的结果。此外,失活离子Eu
3+
的引入可以有效克服Er
3+
和Ho
3+
离子的自终止瓶颈效应。研究发现,与Er
3+
/Ho
3+
∶PbF
2
晶体相比,Er
3+
/Ho
3+
/Eu
3+
∶PbF
2
晶体具有更高的荧光分支比,在Er
3+
:
4
I
11/2
→
4
I
13/2
跃迁为18.7%和Ho
3+
:
5
I
6
→
5
I
7
跃迁为18.0%;以及有更大的发射截面,在2 745 nm时为0.621×10
-20
cm
2
,在2 905 nm时为0.728×10
-20
cm
2
。这些有利的光谱特性表明,Er
3+
/Ho
3+
/Eu
3+
∶PbF
2
晶体在商用980 nm激光二极管泵浦下,可能是2.6~3.2 μm中红外激光器的一种有前景的材料。
In this work
Er
3+
/Ho
3+
/Eu
3+
tri-doped PbF
2
mid-infrared laser crystal was successfully grown using the vertical Bridgman method. As far as we know
it is the first time to obtain a broadband mid-infrared luminescence extending from 2 600 nm to 3 200 nm with a full width at half maximum (FWHM) of 300 nm under 980 nm pump
which is the result of the superposition of the 2.7 μm emission peak of Er
3+
(2 600-2 950 nm) and 2.9 μm emission peak of Ho
3+
(2 800-3 200 nm). What's more
the introduction of deactivation ions Eu
3+
can conquer self-termination bottleneck of both Er
3+
and Ho
3+
ions effectively. It is found that
compared with the Er
3+
/Ho
3+
∶PbF
2
crystal
the Er
3+
/Ho
3+
/Eu
3+
∶PbF
2
crystal has higher fluorescence branching ratio 18.7% of Er
3+
:
4
I
11/2
→
4
I
13/2
transition and 18.0% of Ho
3+
:
5
I
6
→
5
I
7
transition
and larger emission cross section 0.621×10
-20
cm
2
at 2 745 nm and 0.728×10
-20
cm
2
at 2 905 nm. These advantageous spectroscopic characteristics suggest that the Er
3+
/Ho
3+
/Eu
3+
∶PbF
2
crystal may be a promising material for 2.6-3.2 μm mid-infrared lasers under the pump of a commercial 980 nm laser diodes (LDs).
PbF2晶体Er3+/Ho3+/Eu3+中红外发光失活
PbF2 crystalEr3+/Ho3+/Eu3+mid-infrared luminescencedeactivation
SOBON G, MARTYNKIEN T, TARNOWSKI K, et al. Generation of sub-100 fs pulses tunable from 1 700 to 2 100 nm from a compact frequency-shifted Er-fiber laser[J]. Photon. Res., 2017, 5(3):151-155.
SIGRIST M W. Mid-infrared laser-spectroscopic sensing of chemical species[J]. J. Adv. Res., 2015, 6(3):529-533.
杨俊彦, 公发全, 刘锐, 等. 中红外激光在光电对抗领域的应用及进展[J]. 飞控与探测, 2020, 3(6):34-42.
YANG J Y, GONG F Q, LIU R, et al. Application and progress of mid-infrared laser in optoelectronic countermeasure field[J]. Flight Control & Detection, 2020, 3(6):34-42. (in Chinese)
张振, 苏良碧. 掺Er3+晶体近3 μm中红外激光研究进展[J]. 人工晶体学报, 2020, 49(8):1361-1368.
ZHANG Z, SU L B. Research progress of near 3 μm mid-infrared laser based on Er3+ doped single crystals[J]. J. Synth. Cryst., 2020, 49(8):1361-1368. (in Chinese)
周华, 姚传飞, 贾志旭, 等. 中红外可调谐大能量飞秒脉冲激光产生[J]. 发光学报, 2020, 41(4):435-441.
ZHOU H, YAO C F, JIA Z X, et al. Mid-infrared tunable high pulse energy femtosecond pulse laser generation[J]. Chin. J. Lumin., 2020, 41(4):435-441. (in Chinese)
SOROKINA I T. Crystalline mid-infrared lasers[M]. SOROKINA I T, VODOPYANOV K L. Solid-State Mid-infrared Laser Sources. Berlin, Heidelberg: Springer, 2003,89∶262-358.
VODOPYANOV K, GANIKHANOV F, MAFFETONE J, et al. ZnGeP2 optical parametric oscillator with 3.8-12.4 μm tunability[J]. Opt. Lett., 2000, 25(11):841-843.
ZHANG J H, CASSAN E, ZHANG X L. Enhanced mid-to-near-infrared second harmonic generation in silicon plasmonic microring resonators with low pump power[J]. Photon. Res., 2014, 2(5):143-149.
TIKHOMIROV V K, MÉNDEZ-RAMOS J, RODRÍGUEZ V D, et al. Laser and gain parameters at 2.7 μm of Er3+-doped oxyfluoride transparent glass-ceramics[J]. Opt. Mater., 2006, 28(10):1143-1146.
彭江涛, 夏海平, 汪沛渊, 等. Ho3+∶LiYF4晶体的中红外发光特性[J]. 发光学报, 2013, 34(6):702-710.
PENG J T, XIA H P, WANG P Y, et al. Mid-infrared emission properties of Ho3+ doped LiYF4 single crystals[J]. Chin. J. Lumin., 2013, 34(6):702-710. (in Chinese)
JACKSON S D. High-power and highly efficient diode-cladding-pumped holmium-doped fluoride fiber laser operating at 2.94 μm[J]. Opt. Lett., 2009, 34(15):2327-2329.
WANG Y, LI J F, YOU Z Y, et al. Enhanced 2.7 μm emission and its origin in Nd3+/Er3+ codoped SrGdGa3O7 crystal[J]. J. Quant. Spectrosc. Radiat. Transf., 2014, 149:253-257.
王敏刚, 叶斌, 魏冉, 等. Er3+∶CaMoO4单晶的坩埚下降法生长与光谱性能[J]. 人工晶体学报, 2015, 44(10):2626-2631.
WANG M G, YE B, WEI R, et al. Growth and spectral properties of Er3+∶CaMoO4 single crystal by vertical bridgman method[J]. J. Synth. Cryst., 2015, 44(10):2626-2631. (in Chinese)
CAI M Z, ZHOU B E, TIAN Y, et al. Broadband mid-infrared 2.8 μm emission in Ho3+/Yb3+-codoped germanate glasses[J]. J. Lumin., 2016, 171:143-148.
DE SOUSA D F, ZONETTI L F C, BELL MJ V, et al. On the observation of 2.8 μm emission from diode-pumped Er3+ and Yb3+ doped low silica calcium aluminate glasses[J]. Appl. Phys. Lett., 1999, 74(7):908-910.
SCHNEIDE J, CARBONNIER C, UNRAU U B. Characterization of a Ho3+ doped fluoride fiber laser with a 3.9-μm emission wavelength[J]. Appl. Opt., 1997, 36(33):8595-8600.
ZHOU B, LIN H, YANG D L, et al. Emission of 1.38 μm and gain properties from Ho3+ doped low-phonon-energy gallate bismuth lead oxide glasses for fiber-optic amplifiers[J]. Opt. Lett., 2010, 35(2):211-213.
CHICKLIS E P, NAIMAN C S, FOLWEILER R, et al. Stimulated emission in multiply doped Ho3+∶YLF and YAG—a comparison[J]. IEEE J. Quantum Electron., 1972, 8(2):225-230.
杨润柏, 李奕, 徐楠, 等. 碱金属离子对稀土掺杂氟化物上转换荧光的影响[J]. 发光学报, 2019, 40(1):1-8.
YANG R B, LI Y, XU N, et al. Effects of alkali metal ions on upconversion of rare earth doped fluorides[J]. Chin. J. Lumin., 2019, 40(1):1-8. (in Chinese)
NICOARA I, LIGHEZAN L, ENCULESCU M, et al. Optical spectroscopy of Yb2+ ions in YbF3-doped CaF2 crystals[J]. J. Cryst. Growth, 2008, 310(7-9):2026-2032.
YIN J G, HANG Y, HE X H, et al. Transition intensities and excited state relaxation dynamics of Tm3+ in Tm∶PbF2 crystal[J]. Laser Phys., 2012, 22(3):609-613.
ZHANG P X, HANG Y, ZHANG L H. Deactivation effects of the lowest excited state of Ho3+ at 2.9 μm emission introduced by Pr3+ ions in LiLuF4 crystal[J]. Opt. Lett., 2012, 37(24):5241-5243.
张沛雄, 李善明, 杨依伦, 等. 中红外氟化物激光晶体的生长和性能优化研究[J]. 人工晶体学报, 2021, 49(8):1369-1378.
ZHANG P X, LI S M, YANG Y L, et al. Growth and performance optimization of mid-infrared fluoride laser crystal[J]. J. Synth. Cryst., 2021, 49(8):1369-1378. (in Chinese)
BURTON J A, PRIM R C, SLICHTER W P. The distribution of solute in crystals grown from the Melt. Part I. Theoretical[J]. J. Chem. Phys., 1953, 21(11):1987-1991.
HAYES W, RUSHWORTH A J, RYAN J F, et al. A Raman-scattering study of disorder in PbF2 at high temperatures[J]. J. Phys. C Solid State Phys., 1997, 10(5):L111-L114.
HATCH S E, PARSONS W F, WEAGLEY R J. Hot-pressed polycrystalline CaF2∶Dy2+ laser[J]. Appl. Phys. Lett., 1964, 5(8):153-154.
ZHANG P X, YIN J G, ZHANG B T, et al. Intense 2.8 μm emission of Ho3+ doped PbF2 single crystal[J]. Opt. Lett., 2014, 39(14):3942-3945.
TIKHOMIROV V K, FURNISS D, SEDDON A B, et al. Fabrication and characterization of nanoscale,Er3+-doped,ultratransparent oxy-fluoride glass ceramics[J]. Appl. Phys. Lett., 2002, 81(11):1937-1939.
HUANG X B, YANG Y H, ZHANG P X, et al. Efficiently strengthen and broaden 3 μm fluorescence in PbF2 crystal by Er3+/Ho3+ as co-luminescence centers and Pr3+ deactivation[J]. J. Alloys Compd., 2019, 811:152027-1-8.
JUDD B R. Optical absorption intensities of rare-earth ions[J]. Phys. Rev., 1962, 127(3):750-761.
OFELT G S. Intensities of crystal spectra of rare-earth ions[J]. J. Chem. Phys., 1962, 37(3):511-520.
沈定中, 任国浩. 氟化铅晶体的生长新技术及其Cherenkov辐射效应[J]. 物理, 2001, 30(8):496-500.
SHEN D Z, REN G H. New growth method for lead fluoride crystal with strong Cherenkov effect[J]. Physics, 2001, 30(8):496-500. (in Chinese)
LIU Y Y, WANG Y, YOU Z Y, et al. Growth,structure and spectroscopic properties of melilite Er∶CaLaGa3O7 crystal for use in mid-infrared laser[J]. J. Alloys Compd., 2017, 706:387-394.
MA W W, SU L B, XU X D, et al. Effect of erbium concentration on spectroscopic properties and 2.79 μm laser performance of Er∶CaF2 crystals[J]. Opt. Mater. Express, 2016, 6(2):409-415.
ZHOU B E, WEI T, CAI M Z, et al. Analysis on energy transfer process of Ho3+ doped fluoroaluminate glass sensitized by Yb3+ for mid-infrared 2.85 μm emission[J]. J. Quant. Spectrosc. Radiat. Transfer, 2014, 149:41-50.
FENG L, WANG J, TANG Q, et al. Optical properties of Ho3+ -doped novel oxyfluoride glasses[J]. J. Lumin., 2017, 124(2):187-194.
HE W Y, WANG X F, ZHENG J, et al. Optical property of Dy3+ -and Ce3+ -doped Si-B-Na-Sr glasses[J]. J. Am. Ceram. Soc., 2014, 97(6):1750-1755.
XU R R, TIAN Y, HU L L, et al. Enhanced emission of 2.7 μm pumped by laser diode from Er3+/Pr3+ co-doped germanate glasses[J]. Opt. Lett., 2011, 36(7):1173-1175.
0
浏览量
109
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构