浏览全部资源
扫码关注微信
郑州大学 材料科学与工程学院,河南 郑州 450001
[ "姬海鹏(1989-),男,河南南阳人,博士,讲师/校聘副教授,2017年于中国地质大学(北京)获得博士学位,主要从事固体发光材料的研究。E-mail: jihp@zzu.edu.cn" ]
纸质出版日期:2022-01,
收稿日期:2021-09-24,
修回日期:2021-10-11,
移动端阅览
姬海鹏. 荧光粉中激活剂离子掺杂格位分析[J]. 发光学报, 2022,43(1):26-41.
HAI-PENG JI. Analysis of Site-occupation of Activator in Phosphors. [J]. Chinese journal of luminescence, 2022, 43(1): 26-41.
姬海鹏. 荧光粉中激活剂离子掺杂格位分析[J]. 发光学报, 2022,43(1):26-41. DOI: 10.37188/CJL.20210309.
HAI-PENG JI. Analysis of Site-occupation of Activator in Phosphors. [J]. Chinese journal of luminescence, 2022, 43(1): 26-41. DOI: 10.37188/CJL.20210309.
荧光粉的发光特性由激活剂离子的电子构型决定,同时也受激活剂离子在基质中的配位环境的影响。配位环境对激活剂离子发光性能的影响主要体现在电子云膨胀效应和晶体场劈裂效应这两个方面。电子云膨胀效应的强弱取决于激活剂离子与配体离子的成键特性(离子键与共价键成分的比例)以及阴离子极化率的大小;而晶体场劈裂效应的大小取决于激活剂离子与配体离子所形成最近邻配位多面体的配位数、平均键长、畸变程度和点群对称性等。了解激活剂离子所占据格位以分析其所形成最近邻配位多面体构型,对理解荧光粉的发光特性和开发新型荧光粉具有重要意义。本综述总结了文献中所用研究激活剂离子格位占据的8种方法,并通过荧光粉研究实例(主要是以Ce
3+
、Eu
2+
或Mn
4+
为激活剂离子的白光LED用荧光粉)展示了每种方法的特点,通过对比分析指出了各种方法的优势和劣势。这8种方法可归为三类:光谱学方法、结构分析法和计算光谱学方法,其中光谱学方法包括以下五类谱图的测试和分析:激发波长依赖的发光光谱与监测波长依赖的激发光谱、波长依赖的荧光衰减曲线、时间分辨发射光谱、变温发射光谱与变温荧光衰减曲线,以及掺杂浓度依赖的发射光谱。
Besides the electron configuration of the activator
the luminescent properties of a phosphor are also influenced by the nephelauxetic effect and crystal field splitting effect that the activator experiences in a matrix. The degree of the nephelauxetic effect depends on the bonding features between the activator and the ligands(the ratio between the ionic bonding content and the covalent bonding content) as well as the polarizability of the anions
while the degree of the crystal field splitting effect depends on the coordination number
the average bond length
the distortion
and the point group symmetry of the coordination polyhedron composed by the nearest coordinating anions around the activator. Identification of the doping site
which helps analyze the coordination polyhedron
is of great significance in understanding the luminescence properties of the phosphor and developing new phosphors. This mini-review summarizes the eight methods used to identify the site-occupancy of an activator in a phosphor matrix
which can be classified into three categories
i.e.
the spectroscopy methods
the structural analysis method
and the theoretical calculation method. Among them
the spectroscopy methods include five different measurements:(1)excitation wavelength dependent emission spectra and emission wavelength dependent excitation spectra
(2)emission wavelength dependent luminescence decay curves
(3)time-resolved emission spectra
(4)temperature-dependent emission spectra and/or luminescence decay curves
(5)activator-concentration-dependent emission spectra. For clarifying the features of the above methods
some related researches were introduced as examples
which refer to some Ce
3+
Eu
2+
or Mn
4+
activated phosphors for application in white light emitting diodes. The pros and cons of each method were also analyzed.
荧光材料激活剂掺杂格位
luminescent materialsactivatorsite occupancy
DORENBOS P. Crystal field splitting of lanthanide 4fn-15d-levels in inorganic compounds[J]. J. Alloys Compd., 2002, 341(1-2): 156-159.
DORENBOS P. A review on how lanthanide impurity levels change with chemistry and structure of inorganic compounds[J]. ECS J. Solid State Sci. Technol., 2013, 2(2): R3001-R3011.
DORENBOS P. 5d-level energies of Ce3+ and the crystalline environment. Ⅲ. Oxides containing ionic complexes[J]. Phys. Rev. B Condens. Matter Mater. Phys., 2001, 64(12): 125117-1-12.
WANG L, XIE R J, SUEHIRO T, et al. Down-conversion nitride materials for solid state lighting: recent advances and perspectives[J]. Chem. Rev., 2018, 118(4): 1951-2009.
QIAO J W, XIA Z G. Design principles for achieving red emission in Eu2+/Eu3+ doped inorganic solids[J]. J. Appl. Phys., 2021, 129(20): 200903-1-15.
KONG L, GAN S C, HONG G Y, et al. Relationship between crystal structure and luminescence properties of (Y0.96-xLnx-Ce0.04)3Al5O12(Ln=Gd,La,Lu) phosphors[J]. J. Rare Earths, 2007, 25(6): 692-696.
JANG H S, IM W B, LEE D C, et al. Enhancement of red spectral emission intensity of Y3Al5O12∶Ce3+ phosphor via Pr co-doping and Tb substitution for the application to white LEDs[J]. J. Lumin., 2007, 126(2): 371-377.
CHEN L, CHEN X L, LIU F Y, et al. Charge deformation and orbital hybridization: intrinsic mechanisms on tunable chromaticity of Y3Al5O12∶Ce3+ luminescence by doping Gd3+ for warm white LEDs[J]. Sci. Rep., 2015, 5: 11514-1-17.
JI H P, WANG L, MOLOKEEV M S, et al. Structure evolution and photoluminescence of Lu3(Al,Mg)2(Al,Si)3O12∶Ce3+ phosphors: new yellow-color converters for blue LED-driven solid state lighting[J]. J. Mater. Chem. C, 2016, 4(28): 6855-6863.
QIAO J W, NING L X, MOLOKEEV M S, et al. Site-selective occupancy of Eu2+ toward blue-light excited red emission in Rb3YSi2O7∶Eu phosphor[J]. Angew. Chem. Int. Ed., 2019, 58(33): 11521645-11526650.
JI H P, ZHANG Z T, XU J, et al. Advance in red-emitting Mn4+-activated oxyfluoride phosphors[J]. J. Inorg. Mater., 2020, 35(8): 847-856.
JI H P, Ueda J, BRIK M G, et al. Intense deep-red zero phonon line emission of Mn4+ in double perovskite La4Ti3O12[J]. Phys. Chem. Chem. Phys., 2019, 21(45): 25108-25117.
ZHOU R F, LIU C M, LIN L T, et al. Multi-site occupancies of Eu2+ in Ca6BaP4O17 and their potential optical thermometric applications[J]. Chem. Eng. J., 2019, 369: 376-385.
SHI R, QI M M, NING L X, et al. Combined experimental and ab initio study of site preference of Ce3+ in SrAl2O4[J]. J. Phys. Chem. C, 2015, 119(33): 19326-19332.
JI H P, XU J, ASAMI K, et al. Local coordination, electronic structure, and thermal quenching of Ce3+ in isostructural Sr2GdAlO5 and Sr3AlO4F phosphors[J]. J. Am. Ceram. Soc., 2019, 102(3): 1316-1328.
NING L X, WANG Y F, WANG Z C, et al. First-principles study on site preference and 4f → 5d transitions of Ce3+ in Sr3AlO4F[J]. J. Phys. Chem. A, 2014, 118(6): 986-992.
LIN L T, HUANG X X, SHI R, et al. Luminescence properties and site occupancy of Ce3+ in Ba2SiO4: a combined experimental and ab initio study[J]. RSC Adv., 2017, 7(41): 25685-25693.
BINNEMANS K. Interpretation of europium(Ⅲ) spectra[J]. Coord. Chem. Rev., 2015, 295: 1-45.
ZHOU Q, DOLGOV L, SRIVASTAVA A M, et al. Mn2+ and Mn4+ red phosphors: synthesis, luminescence and applications in WLEDs. A review[J]. J. Mater. Chem. C, 2018, 6(11): 2652-2671.
LIN L T, SHI R, ZHOU R F, et al. The effect of Sr2+ on luminescence of Ce3+-doped (Ca,Sr)2Al2SiO7[J]. Inorg. Chem., 2017, 56(20): 12476-12484.
SOHN K S, LEE S J, XIE R J, et al. Time-resolved photoluminescence analysis of two-peak emission behavior in Sr2Si5N8∶Eu2+[J]. Appl. Phys. Lett., 2009, 95(12): 121903-1-3.
DU P, YU J S. Near-ultraviolet light induced visible emissions in Er3+-activated La2MoO6 nanoparticles for solid-state lighting and non-contact thermometry[J]. Chem. Eng. J., 2017, 327: 109-119.
PIAO X Q, MACHIDA K I, HORIKAWA T, et al. Self-propagating high temperature synthesis of yellow-emitting Ba2Si5N8∶Eu2+ phosphors for white light-emitting diodes[J]. Appl. Phys. Lett., 2007, 91(4): 041908-041911.
BÉRAR J F, LELANN P. E.s.d.'s and estimated probable error obtained in Rietveld refinements with local correlations[J]. J. Appl. Crystallogr., 1991, 24(1): 1-5.
陆坤权, 万军, 赵雅琴, 等. 用EXAFS方法研究玻璃中混合配位态的比例及结构[J]. 中国科学(A辑), 1988, 18(2): 219-224.
LU K Q, WAN J, ZHAO Y Q, et al. Study of structure and content of mixed coordination states in glasses with exafs method[J]. Sci. China, Ser. A, 1988, 32(1): 113-119.
ADAMCZYK B J, POELMAN D, KORTHOUT K, et al. Role of pressure in stabilization of oxynitride phosphor synthesis[J]. Appl. Phys. A, 2021, 127(7): 500-1-8.
AKAI T, SHIGEIWA M, OKAMOTO K, et al. XAFS analysis of local structure around Ce in Ca3Sc2Si3O12∶Ce phosphor for white LEDs[J]. AIP Conf. Proc., 2007, 882: 389-391.
LIANG S S, HUANG D C, HU J, et al. A highly efficient red emitting phosphor with enhanced blue-light absorption through a local crystal field regulation strategy[J]. Chem. Eng. J., 2022, 429: 132231.
AIGA F, HIRAMATSU R, ISHIDA K. Ab initio theoretical study of 4f→5d transitions in Eu2+-doped CaF2:(2) Augmented-basis-set-study[J]. J. Lumin., 2016, 169: 601-605.
NING L X, HUANG X X, HUANG Y C, et al. Origin of the green persistent luminescence of Eu-doped SrAl2O4 from a multiconfigurational ab initio study of 4f7 → 4f65d1 transitions[J]. J. Mater. Chem. C, 2018, 6(25): 6637-6640.
LIN L T, NING L X, ZHOU R F, et al. Site occupation of Eu2+ in Ba2-xSrxSiO4 (x=0-1.9) and origin of improved luminescence thermal stability in the intermediate composition[J]. Inorg. Chem., 2018, 57(12): 7090-7096.
BRIK M G, AVRAM N M, AVRAM C N. Advances of crystal field theory and exchange charge model[J]. Magn. Reson. Solids, 2019, 21: 19405.
PENG M Y, YIN X W, TANNER P A, et al. Site occupancy preference, enhancement mechanism, and thermal resistance of Mn4+ red luminescence in Sr4Al14O25∶Mn4+ for warm WLEDs[J]. Chem. Mater., 2015, 27(8): 2938-2945.
LIU C M, LIANG H B, KUANG X J, et al. Structure refinement and two-center luminescence of Ca3La3(BO3)5∶Ce3+ under VUV-UV excitation[J]. Inorg. Chem., 2012, 51(16): 8802-8809.
0
浏览量
1880
下载量
4
CSCD
关联资源
相关文章
相关作者
相关机构