浏览全部资源
扫码关注微信
1.太原科技大学 应用科学学院,山西 太原 030024
2.福建师范大学物理与能源学院 福建省量子调控与新能源材料重点实验室,福建 福州 350117
3.山西医科大学 口腔医学院,山西 太原 030051
[ "何松杰(1998-),男,河南周口人,硕士研究生,2020年于南通大学获得学士学位,主要从事碳点材料的制备及其在生物医学和农业方面应用的研究。E-mail: hsjxmm@foxmail.com" ]
[ "张清梅(1985-),女,山西临县人,博士,副教授,2014年于南京大学获得博士学位,主要从事碳点材料的制备及其在离子检测及生物医学方面应用的研究。E-mail: qmzhang@tyust.edu.cn" ]
[ "李冰(1975-),男,山西运城人,博士,教授,主任医师,博士生导师,2014年于解放军总医院和山西医科大学获得博士学位,主要从事新型碳纳米口腔材料的研发及口腔图像识别处理的研究。E-mail: libing-1975@163.com" ]
纸质出版日期:2022-01,
收稿日期:2021-09-24,
修回日期:2021-10-12,
移动端阅览
何松杰, 张清梅, 张路鹏, 等. pH响应型碳点的荧光机制和生物医学应用[J]. 发光学报, 2022,43(1):137-151.
SONG-JIE HE, QING-MEI ZHANG, LU-PENG ZHANG, et al. Fluorescence Mechanism and Biomedical Applications of pH-responsive Carbon Dots. [J]. Chinese journal of luminescence, 2022, 43(1): 137-151.
何松杰, 张清梅, 张路鹏, 等. pH响应型碳点的荧光机制和生物医学应用[J]. 发光学报, 2022,43(1):137-151. DOI: 10.37188/CJL.20210307.
SONG-JIE HE, QING-MEI ZHANG, LU-PENG ZHANG, et al. Fluorescence Mechanism and Biomedical Applications of pH-responsive Carbon Dots. [J]. Chinese journal of luminescence, 2022, 43(1): 137-151. DOI: 10.37188/CJL.20210307.
碳点(CDs)作为一种新型的零维碳基纳米材料,由于其优异的荧光性质、良好的生物兼容性、低细胞毒性以及丰富的表面官能团等性质,在荧光传感和生物医学领域具有巨大的应用潜力。特别是针对肿瘤弱酸性的微环境特点,设计pH响应型碳点来实现对肿瘤的特异性治疗将尤为重要。本文对近年来基于pH响应型碳点的研究工作进行了系统的调研,综述了pH响应型碳点的荧光机制及其在pH传感、生物成像及癌症治疗等生物医学领域的应用,并对pH响应型碳点目前面临的主要挑战以及未来发展的方向进行了展望。
As a new type of zero-dimensional carbon-based nanomaterials
carbon dots(CDs) have a great application potential in the fields of fluorescence sensing and biomedicine due to their excellent fluorescence properties
good biocompatibility
low cytotoxicity
and large surface functional groups. Especially given the weakly acidic microenvironment characteristics of tumors
it is crucial to design pH-responsive carbon dots to achieve specific treatment. This article has conducted a systematic investigation on the research work based on pH-responsive carbon dots in recent years and reviewed the fluorescence mechanism of pH-responsive carbon dots and their applications in biomedical fields such as pH sensing
bioimaging
and cancer treatment. Finally
the main challenges currently faced by pH-responsive carbon dots and the future development direction have been prospected.
pH响应型碳点荧光机制pH传感生物成像癌症治疗
pH-responsive carbon dotsfluorescence mechanismpH sensingbioimagingcancer treatment
CASEY J R, GRINSTEIN S, ORLOWSKI J. Sensors and regulators of intracellular pH[J]. Nat. Rev. Mol. Cell Biol., 2010, 11(1): 50-61.
WU Z L, GAO M X, WANG T T, et al. A general quantitative pH sensor developed with dicyandiamide N-doped high quantum yield graphene quantum dots[J]. Nanoscale, 2014, 6(7): 3868-3874.
STUBBS M, MCSHEEHY P M J, GRIFFITHS J R, et al. Causes and consequences of tumour acidity and implications for treatment[J]. Mol. Med. Today, 2000, 6(1): 15-19.
GETHIN G. The significance of surface pH in chronic wounds[J]. Wounds UK, 2007, 3(3): 52-56.
SCHNEIDER L A, KORBER A, GRABBE S, et al. Influence of pH on wound-healing: a new perspective for wound-therapy?[J]. Arch. Dermatol. Res., 2007, 298(9): 413-420.
WEBB B A, CHIMENTI M, JACOBSON M P, et al. Dysregulated pH: a perfect storm for cancer progression[J]. Nat. Rev. Cancer, 2011, 11(9): 671-677.
ZHU H, FAN J L, XU Q L, et al. Imaging of lysosomal pH changes with a fluorescent sensor containing a novel lysosome-locating group[J]. Chem. Commun (Camb)., 2012, 48(96): 11766-11768.
HAN J Y, BURGESS K. Fluorescent indicators for intracellular pH[J]. Chem. Rev., 2010, 110(5): 2709-2728.
SHEN Y, ROSENDALE M, CAMPBELL R E, et al. PHuji, a pH-sensitive red fluorescent protein for imaging of exo- and endocytosis[J]. J. Cell. Biol., 2014, 207(3): 419-432.
HARDMAN R. A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors[J]. Environ. Health. Perspect., 2006, 114(2): 165-172.
HU C, LI M Y, QIU J S, et al. Design and fabrication of carbon dots for energy conversion and storage[J]. Chem. Soc. Rev., 2019, 48(8): 2315-2337.
YAN Y B, GONG J, CHEN J, et al. Recent advances on graphene quantum dots: from chemistry and physics to applications[J]. Adv. Mater., 2019, 31(21): e1808283-1-22.
TAO S Y, FENG T L, ZHENG C Y, et al. Carbonized polymer dots: a brand new perspective to recognize luminescent carbon-based nanomaterials[J]. J. Phys. Chem. Lett., 2019, 10(17): 5182-5188.
TAO S Y, ZHU S J, FENG T L, et al. Crosslink-enhanced emission effect on luminescence in polymers: advances and perspectives[J]. Angew. Chem. Int. Ed. Engl., 2020, 59(25): 9826-9840.
CHEN B B, LIU M L, HUANG C Z. Recent advances of carbon dots in imaging-guided theranostics[J]. TrAC Trends Anal. Chem., 2021, 134: 116116.
JIANG L, DING H Z, XU M S, et al. UV-Vis-NIR full-range responsive carbon dots with large multiphoton absorption cross sections and deep-red fluorescence at nucleoli and in vivo[J]. Small, 2020, 16(19): 2000680-1-9.
SHARMA V, TIWARI P, MOBIN S M. Sustainable carbon-dots: recent advances in green carbon dots for sensing and bioimaging[J]. J. Mater. Chem. B, 2017, 5(45): 8904-8924.
YAO Y Y, GEDDA G, GIRMA W M, et al. Magnetofluorescent carbon dots derived from crab shell for targeted dual-modality bioimaging and drug delivery[J]. ACS Appl. Mater. Interfaces, 2017, 9(16): 13887-13899.
GONG P W, ZHANG L, PENG J Y, et al. Smart “on-off-on” fluorescent switches for drug visual loading and responsive delivery[J]. Dyes Pigm., 2020, 173: 107893-1-8.
CHUNG Y J, KIM J, PARK C B. Photonic carbon dots as an emerging nanoagent for biomedical and healthcare applications[J]. ACS Nano, 2020, 14(6): 6470-6497.
南福春, 薛小矿, 葛介超, 等. 红光/近红外光响应碳点在肿瘤治疗中的应用进展[J]. 发光学报, 2021, 42(8): 1155-1171.
NAN F C, XUE X K, GE J C, et al. Recent advances of red/near infrared light responsive carbon dots for tumor therapy[J]. Chin. J. Lumin., 2021, 42(8): 1155-1171. (in Chinese)
CHEN J M, FAN T J, XIE Z J, et al. Advances in nanomaterials for photodynamic therapy applications: status and challenges[J]. Biomaterials, 2020, 237: 119827.
SALEEM J, WANG L M, CHEN C Y. Carbon-based nanomaterials for cancer therapy via targeting tumor microenvironment[J]. Adv. Healthc. Mater., 2018, 7(20): e1800525.
DEVI P, SAINI S, KIM K H. The advanced role of carbon quantum dots in nanomedical applications[J]. Biosens. Bioelectron., 2019, 141: 111158.
MAZRAD Z A I, LEE K, CHAE A, et al. Progress in internal/external stimuli responsive fluorescent carbon nanoparticles for theranostic and sensing applications[J]. J. Mater. Chem. B, 2018, 6(8): 1149-1178.
LI W D, LIU Y, WU M, et al. Carbon-quantum-dots-loaded ruthenium nanoparticles as an efficient electrocatalyst for hydrogen production in alkaline media[J]. Adv. Mater., 2018, 30(31): 1800676-1-8.
ZHAO Y, ZENG Q S, YU Y, et al. Enhanced charge separation and photocatalytic hydrogen evolution in carbonized-polymer-dot-coupled lead halide perovskites[J]. Mater. Horiz., 2020, 7(10): 2719-2725.
ZHANG J, YUAN Y, LIANG G L, et al. Scale-up synthesis of fragrant nitrogen-doped carbon dots from bee pollens for bioimaging and catalysis[J]. Adv. Sci (Weinh)., 2015, 2(4): 1500002-1-6.
WANG Z F, YUAN F L, LI X H, et al. 53% Efficient red emissive carbon quantum dots for high color rendering and stable warm white-light-emitting diodes[J]. Adv. Mater., 2017, 29(37): 1702910-1-7.
YUAN F L, WANG Y K, SHARMA G, et al. Bright high-colour-purity deep-blue carbon dot light-emitting diodes via efficient edge amination[J]. Nat. Photonics, 2019, 14(3): 171-176.
YUAN F L, YUAN T, SUI L Z, et al. Engineering triangular carbon quantum dots with unprecedented narrow bandwidth emission for multicolored LEDs[J]. Nat. Commun., 2018, 9(1): 2249-1-11.
CHEN Y F, WU Y Y, WENG B, et al. Facile synthesis of nitrogen and sulfur co-doped carbon dots and application for Fe(Ⅲ) ions detection and cell imaging[J]. Sens. Actuators B Chem., 2016, 223: 689-696.
SAWALHA S, SILVESTRI A, CRIADO A, et al. Tailoring the sensing abilities of carbon nanodots obtained from olive solid wastes[J]. Carbon, 2020, 167: 696-708.
LI G, CHENG R, CHENG H Y, et al. Microfluidic synthesis of robust carbon dots-functionalized photonic crystals[J]. Chem. Eng. J., 2021, 405: 126539.
LU W J, JIAO Y, GAO Y F, et al. Bright yellow fluorescent carbon dots as a multifunctional sensing platform for the label-free detection of fluoroquinolones and histidine[J]. ACS Appl. Mater. Inter., 2018, 10(49): 42915-42924.
MOHAMMED L J, OMER K M. Carbon dots as new generation materials for nanothermometer: review[J]. Nanoscale Res. Lett., 2020, 15(1): 182-1-21.
JIANG Y N, ZHANG X J, XIAO L Z, et al. Preparation of dual-emission polyurethane/carbon dots thermoresponsive composite films for colorimetric temperature sensing[J]. Carbon, 2020, 163: 26-33.
刘俊, 张熙荣, 熊焕明. 荧光碳点在指纹检测中的应用[J]. 发光学报, 2021, 42(8): 1095-1113.
LIU J, ZHANG X R, XIONG H M. Application of fluorescent carbon dots in fingerprint detection[J]. Chin. J. Lumin., 2021, 42(8): 1095-1113. (in Chinese)
JIANG K, WANG Y H, CAI C Z, et al. Conversion of carbon dots from fluorescence to ultralong room-temperature phosphorescence by heating for security applications[J]. Adv. Mater., 2018, 30(26): 1800783-1-8.
JIANG K, WANG Y H, GAO X L, et al. Facile, quick, and gram-scale synthesis of ultralong-lifetime room-temperature-phosphorescent carbon dots by microwave irradiation[J]. Angew. Chem. Int. Ed. Engl., 2018, 57(21): 6216-6220.
XIA C L, ZHU S J, FENG T L, et al. Evolution and synthesis of carbon dots: from carbon dots to carbonized polymer dots[J]. Adv. Sci (Weinh)., 2019, 6(23): 1901316-1-23.
ZHANG Z T, YI G Y, LI P, et al. A minireview on doped carbon dots for photocatalytic and electrocatalytic applications[J]. Nanoscale, 2020, 12(26): 13899-13906.
DHENADHAYALAN N, LIN K C, SALEH T A. Recent advances in functionalized carbon dots toward the design of efficient materials for sensing and catalysis applications[J]. Small, 2020, 16(1): e1905767.
LIU Z, IIIPICKENS D, HE T, et al. A thermal elastohydrodynamic lubrication model for crowned rollers and its application on apex seal-housing interfaces[J]. J. Tribol., 2019, 141(4): 041501-1-14.
朱志承, 杨柏. 基于碳点与适配体的荧光生物传感器制备与应用[J]. 发光学报, 2021, 42(8): 1196-1214.
ZHU Z C, YANG B. Fabrication and application of fluorescence biosensors based on carbon dots and aptamer[J]. Chin. J. Lumin., 2021, 42(8): 1196-1214. (in Chinese)
郑敏, 刘坤梅, 苏雅. 碳点在生物医学领域中的应用[J]. 发光学报, 2021, 42(8): 1233-1244.
ZHENG M, LIU K M, SU Y. Carbon dots for biomedical applications[J]. Chin. J. Lumin., 2021, 42(8): 1233-1244. (in Chinese)
毛惠会, 湛志华, 周国华, 等. 荧光碳量子点在药物分析中的应用研究进展[J]. 发光学报, 2021, 42(8): 1245-1256.
MAO H H, ZHAN Z H, ZHOU G H, et al. Advances in application of fluorescent carbon quantum dots in drug analysis[J]. Chin. J. Lumin., 2021, 42(8): 1245-1256. (in Chinese)
EHTESABI H, HALLAJI Z, NOBAR S N, et al. Carbon dots with pH-responsive fluorescence: a review on synthesis and cell biological applications[J]. Mikrochim. Acta, 2020, 187(2): 150-1-18.
LIU C, ZHANG F, HU J, et al. A mini review on pH-sensitive photoluminescence in carbon nanodots[J]. Front. Chem., 2020, 8(1): 605028-1-9.
SAFAVI A, AHMADI R, MOHAMMADPOUR Z, et al. Fluorescent pH nanosensor based on carbon nanodots for monitoring minor intracellular pH changes[J]. RSC Adv., 2016, 6(106): 104657-104664.
SUN Y Q, WANG X J, WANG C, et al. Red emitting and highly stable carbon dots with dual response to pH values and ferric ions[J]. Mikrochim. Acta, 2018, 185(1): 83-1-8.
HU Y P, YANG J, TIAN J W, et al. Waste frying oil as a precursor for one-step synthesis of sulfur-doped carbon dots with pH-sensitive photoluminescence[J]. Carbon, 2014, 77: 775-782.
KONG W G, WU H Z, YE Z Y, et al. Optical properties of pH-sensitive carbon-dots with different modifications[J]. J. Lumin., 2014, 148: 238-242.
ZHAO C X, LI X, CHENG C S, et al. Green and microwave-assisted synthesis of carbon dots and application for visual detection of cobalt(Ⅱ) ions and pH sensing[J]. Microchem. J., 2019, 147: 183-190.
XU Z Q, LAN J Y, JIN J C, et al. Mechanistic studies on the reversible photophysical properties of carbon nanodots at different pH[J]. Colloids Surf.,B Biointerfaces, 2015, 130: 207-214.
DA SILVA A O, RODRIGUES M O, SOUSA M H, et al. pH-dependent surface properties of N-Cdots obtained by the hydrothermal method with multicolored emissions[J]. Colloids Surf.,A,Physicochem. Eng. Asp., 2021, 621: 126578.
LV W X, WANG X, WU J H, et al. pH and H2O2 dual-responsive carbon dots for biocatalytic transformation monitoring[J]. Chin. Chem. Lett., 2019, 30(9): 1635-1638.
WANG Q, YANG H T, ZHANG Q, et al. Strong acid-assisted preparation of green-emissive carbon dots for fluorometric imaging of pH variation in living cells[J]. Mikrochim. Acta., 2019, 186(7): 468-1-9476.
LIU C, YANG M L, HU J, et al. Quantitatively switchable pH-sensitive photoluminescence of carbon nanodots[J]. J. Phys. Chem. Lett., 2021, 12(11): 2727-2735.
FAN Z T, ZHOU S X, GARCIA C, et al. pH-responsive fluorescent graphene quantum dots for fluorescence-guided cancer surgery and diagnosis[J]. Nanoscale, 2017, 9(15): 4928-4933.
YUAN F L, DING L, LI Y C, et al. Multicolor fluorescent graphene quantum dots colorimetrically responsive to all-pH and a wide temperature range[J]. Nanoscale, 2015, 7(27): 11727-11733.
SHI L H, LI Y Y, LI X F, et al. Controllable synthesis of green and blue fluorescent carbon nanodots for pH and Cu2+ sensing in living cells[J]. Biosens. Bioelectron., 2016, 77: 598-602.
ZHANG C F, CUI Y Y, SONG L, et al. Microwave assisted one-pot synthesis of graphene quantum dots as highly sensitive fluorescent probes for detection of iron ions and pH value[J]. Talanta, 2016, 150: 54-60.
CHOUDHURY S D, CHETHODIL J M, GHARAT P M, et al. pH-elicited luminescence functionalities of carbon dots: mechanistic insights[J]. J. Phys. Chem. Lett., 2017, 8(7): 1389-1395
QIAN Z S, MA J J, SHAN X Y, et al. Highly luminescent N-doped carbon quantum dots as an effective multifunctional fluorescence sensing platform[J]. Chem. Eur. J., 2014, 20(8): 2254-2263.
GAO P L, WANG J W, ZHENG M, et al. Lysosome targeting carbon dots-based fluorescent probe for monitoring pH changes in vitro and in vivo[J]. Chem. Eng. J., 2020, 381: 122665.
LIU Q L, NIU X Y, ZHANG Y, et al. Carbon dots for lysosome targeting and imaging of lysosomal pH and Cys/Hcy in living cells[J]. Nanoscale, 2020, 12(24): 13010-13016.
LI L, SHI L H, JIA J, et al. Red fluorescent carbon dots for tetracycline antibiotics and pH discrimination from aggregation-induced emission mechanism[J]. Sens. Actuators B Chem., 2021, 332: 129513.
KURNIAWAN D, CHIANG W H. Microplasma-enabled colloidal nitrogen-doped graphene quantum dots for broad-range fluorescent pH sensors[J]. Carbon, 2020, 167: 675-684.
ZHANG X Q, CHEN C Y, PENG D P, et al. pH-responsive carbon dots with red emission for real-time and visual detection of amines[J]. J. Mater. Chem. C, 2020, 8(33): 11563-11571.
LIN M H, MA X, LIN S J, et al. Fluorescent probe based on N-doped carbon dots for the detection of intracellular pH and glutathione[J]. RSC Adv., 2020, 10(56): 33635-33641.
XU S M, HE X, HUANG Y B, et al. Lysosome-targeted ratiometric fluorescent sensor for monitoring pH in living cells based on one-pot-synthesized carbon dots[J]. Mikrochim. Acta, 2020, 187(8): 478-1-9.
CHOI C A, LEE J E, MAZRAD Z A I, et al. Dual-responsive carbon dot for ph/redox-triggered fluorescence imaging with controllable photothermal ablation therapy of cancer[J]. ChemMedChem, 2018, 13(14): 1459-1468.
ZHANG B Y, DUAN Q Q, LI Y, et al. pH and redox dual-sensitive drug delivery system constructed based on fluorescent carbon dots[J]. RSC Adv., 2021, 11(5): 2656-2663.
SARKAR N, SAHOO G, DAS R, et al. Carbon quantum dot tailored calcium alginate hydrogel for pH responsive controlled delivery of vancomycin[J]. Eur. J. Pharm. Sci., 2017, 109: 359-371.
JIAO J, LIU C, LI X, et al. Fluorescent carbon dot modified mesoporous silica nanocarriers for redox-responsive controlled drug delivery and bioimaging[J]. J. Colloid Interface Sci., 2016, 483: 343-352.
ZHANG X, SHEN Y T, XU S P, et al. Intracellular pH-propelled assembly of smart carbon nanodots and selective photothermal therapy for cancer cells[J]. Colloids Surf.,B Biointerfaces, 2020, 188: 110724.
SHEN Y T, ZHANG X, LIANG L J, et al. Mitochondria-targeting supra-carbon dots: enhanced photothermal therapy selective to cancer cells and their hyperthermia molecular actions[J]. Carbon, 2020, 156: 558-567.
KIM D H, SEO J, NA K. pH-sensitive carbon dots for enhancing photomediated antitumor immunity[J]. Mol. Pharm., 2020, 17(7): 2532-2545.
YANG X X, HOU S Y CHU T, et al. Preparation of magnesium, nitrogen-codoped carbon quantum dots from lignin with bright green fluorescence and sensitive pH response[J]. Ind. Crops. Prod., 2021, 167: 13507.
GUO Z H, PAN R K, CHENG J J, et al. Surface metal-ion-functionalized carbon dots and their application in pH sensing[J]. Appl. Phys. A, 2020, 126(3): 160-1-8.
CHANG D, LI L, SHI L H, et al. Hg2+ detection, pH sensing and cell imaging based on bright blue-fluorescent N-doped carbon dots[J]. Analyst, 2020, 145(24): 8030-8037.
WANG Y, LU L L, PENG H, et al. Multi-doped carbon dots with ratiometric pH sensing properties for monitoring enzyme catalytic reactions[J]. Chem. Commun (Camb)., 2016, 52(59): 9247-9250.
KONG B, ZHU A W, DING C Q, et al. Carbon dot-based inorganic-organic nanosystem for two-photon imaging and biosensing of pH variation in living cells and tissues[J]. Adv. Mater., 2012, 24(43): 5844-5848.
SHEN C, SUN Y P, WANG J, et al. Facile route to highly photoluminescent carbon nanodots for ion detection, pH sensors and bioimaging[J]. Nanoscale, 2014, 6(15): 9139-9147.
FENG T, AI X Z, ONG H M, et al. Dual-responsive carbon dots for tumor extracellular microenvironment triggered targeting and enhanced anticancer drug delivery[J]. ACS Appl. Mater. Interfaces, 2016, 8(29): 18732-18740.
WANG H, DI J, SUN Y B, et al. Biocompatible PEG-chitosan@carbon dots hybrid nanogels for two-photon fluorescence imaging, near-infrared light/pH dual-responsive drug carrier, and synergistic therapy[J]. Adv. Funct. Mater., 2015, 25(34): 5537-5547.
0
浏览量
572
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构