浏览全部资源
扫码关注微信
北京工业大学化学与生物系 绿色催化与分离北京市重点实验室 环境安全与生物效应中心,北京 100124
[ "徐冀健(1994-),男,山西太原人,硕士研究生,2017年于天津大学获得学士学位,主要从事红光碳点及碳点相关材料的研究。E-mail: 332485198@qq.com" ]
[ "曲丹(1988-),女,黑龙江安达人,博士,教授,博士研究生导师,2017年于中国科学院长春光学精密机械与物理研究所获得博士学位,主要从事荧光碳点的光学性质调控及应用的研究。E-mail: danqu@bjut.edu.cn" ]
[ "孙再成(1973-),男,黑龙江绥化人,博士,教授,博士研究生导师,1999年于中国科学院长春应用化学研究所获得博士学位,主要从事具有可见光响应的光催化体系以及荧光碳点的合成与应用的研究。E-mail: sunzc@bjut.edu.cn" ]
纸质出版日期:2021-12,
收稿日期:2021-09-16,
修回日期:2021-09-25,
移动端阅览
徐冀健, 曲丹, 安丽, 等. 红光/近红外发射碳点制备、光学调控与应用[J]. 发光学报, 2021,42(12):1837-1851.
JI-JIAN XU, DAN QU, LI AN, et al. Preparation, Optical Control and Application of Red/Near Infrared Emitting Carbon Dots. [J]. Chinese journal of luminescence, 2021, 42(12): 1837-1851.
徐冀健, 曲丹, 安丽, 等. 红光/近红外发射碳点制备、光学调控与应用[J]. 发光学报, 2021,42(12):1837-1851. DOI: 10.37188/CJL.20210302.
JI-JIAN XU, DAN QU, LI AN, et al. Preparation, Optical Control and Application of Red/Near Infrared Emitting Carbon Dots. [J]. Chinese journal of luminescence, 2021, 42(12): 1837-1851. DOI: 10.37188/CJL.20210302.
红光/近红外发射碳点(简称R/NIR-CDs)具有生物相容性好、空间分辨率高等优势,受到了研究者们的广泛关注。但目前报道的红光碳点往往存在荧光量子效率低、半峰宽较宽且具有激发波长依赖的缺陷,限制了其在生物医学领域的应用。因此,合成制备高荧光量子产率(PLQY)、半峰宽窄且激发非依赖的红光/近红外发射碳点具有十分重要的意义。本文首先阐述了近年来几种具有代表性的典型前驱体及其合成碳点,总结了尺寸效应、杂原子掺杂、表面态等高效的碳点光学调控理论,并简要介绍了红光/近红外发射碳点在生物成像、疾病治疗及白光发光二极管中的应用现状。最后,针对红光/近红外发射碳点的发光机理、制备方法中面临的问题与挑战进行了展望。
Red/near-infrared emitting carbon dots(marked as R/NIR-CDs) have the advantages of good biocompatibility and high spatial resolution
which had attracted the attention of researchers. However
the currently reported red carbon dots often have the defects of low fluorescence quantum efficiency
wide full width at half-maximum and excitation wavelength dependence
which limit their application in the biomedical field. Therefore
it is of great significance to synthesize carbon dots with high photoluminescence quantum yield(PLQY)
narrow half-width and excitation-independent red/near-infrared emission. This article first describes several representative typical precursors and their synthesized carbon dots in recent years
and then summarizes several efficient regulation methods for the optical properties of CDs such as size effect
heteroatom doping
surface state
etc
and briefly introduces the application of red/near infrared emitting carbon dots in bioimaging
disease treatment and white light emitting diodes. Finally
the problems and challenges faced in the luminescence mechanism and the preparation method of red/near-infrared emitting carbon dots are prospected.
碳点红光/近红外发射光学调控生物成像LED
carbon dotsred/NIR emissionoptical controlbioimagingLED
XU X Y, RAY R, GU Y L, et al. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments[J]. J. Am. Chem. Soc., 2004, 126(40):12736-12737.
ZHU S J, SONG Y B, ZHAO X H, et al. The photoluminescence mechanism in carbon dots (graphene quantum dots,carbon nanodots,and polymer dots):current state and future perspective[J]. Nano Res., 2015, 8(2):355-381.
XU D, LIN Q L, CHANG H T. Recent advances and sensing applications of carbon dots[J]. Small Methods, 2020, 4(4):1900387-1-17.
HU S L, TRINCHI A, ATKIN P, et al. Tunable photoluminescence across the entire visible spectrum from carbon dots excited by white light[J]. Angew. Chem. Int. Ed., 2015, 54(10):2970-2974.
HAO Y L, GAN Z X, XU J Q, et al. Poly(ethylene glycol)/carbon quantum dot composite solid films exhibiting intense and tunable blue-red emission[J]. Appl. Surf. Sci., 2014, 311:490-497.
QU D, SUN Z C, ZHENG M, et al. Three colors emission from S,N co-doped graphene quantum dots for visible light H2 production and bioimaging[J]. Adv. Opt. Mater., 2015, 3(3):360-367.
PAN L L, SUN S, ZHANG A D, et al. Truly fluorescent excitation-dependent carbon dots and their applications in multicolor cellular imaging and multidimensional sensing[J]. Adv. Mater., 2015, 27(47):7782-7787.
JIANG K, SUN S, ZHANG L, et al. Red,green,and blue luminescence by carbon dots∶full-color emission tuning and multicolor cellular imaging[J]. Angew. Chem. Int. Ed., 2015, 54(18):5360-5363.
TIAN Z, ZHANG X T, LI D, et al. Full-color inorganic carbon dot phosphors for white-light-emitting diodes[J]. Adv. Opt. Mater., 2017, 5(19):1700416-1-9.
LU S Y, SUI L Z, LIU J J, et al. Near-infrared photoluminescent polymer-carbon nanodots with two-photon fluorescence[J]. Adv. Mater., 2017, 29(15):1603443-1-6.
D'SOUZA S L, DESHMUKH B, BHAMORE J R, et al. Synthesis of fluorescent nitrogen-doped carbon dots from dried shrimps for cell imaging and boldine drug delivery system[J]. RSC Adv., 2016, 6(15):12169-12179.
KUNDELEV E V, TEPLIAKOV N V, LEONOV M Y, et al. Amino functionalization of carbon dots leads to red emission enhancement[J]. J. Phys. Chem. Lett., 2019, 10(17):5111-5116.
MIAO X, QU D, YANG D X, et al. Synthesis of carbon dots with multiple color emission by controlled graphitization and surface functionalization[J]. Adv. Mater., 2018, 30(1):1704740-1-8.
SU D D, HAN X S, YAN X, et al. Smartphone-assisted robust sensing platform for on-site quantitation of 2,4-dichlorophenoxyacetic acid using red emissive carbon dots[J]. Anal. Chem., 2020, 92(18):12716-12724.
SHEN C L, ZHENG G S, WU M Y, et al. Chemiluminescent carbon nanodots as sensors for hydrogen peroxide and glucose[J]. Nanophotonics, 2020, 9(11):3597-3604.
SARKAR S, SUDOLSKÁ M, DUBECKÝ M, et al. Graphitic nitrogen doping in carbon dots causes red-shifted absorption[J]. J. Phys. Chem. C, 2016, 120(2):1303-1308.
MANIOUDAKIS J, VICTORIA F, THOMPSON C A, et al. Effects of nitrogen-doping on the photophysical properties of carbon dots[J]. J. Mater. Chem. C, 2019, 7(4):853-862.
LI H X, SU D D, GAO H, et al. Design of red emissive carbon dots∶robust performance for analytical applications in pesticide monitoring[J]. Anal. Chem., 2020, 92(4):3198-3205.
JIAO Y, LIU Y, MENG Y T, et al. Novel processing for color-tunable luminescence carbon dots and their advantages in biological systems[J]. ACS Sustainable Chem. Eng., 2020, 8(23):8585-8592.
DONG X Y, NIU X Q, ZHANG Z Y, et al. Red fluorescent carbon dot powder for accurate latent fingerprint identification using an artificial intelligence program[J]. ACS Appl. Mater. Interfaces, 2020, 12(26):29549-29555.
WANG B Y, YU J K, SUI L Z, et al. Rational design of multi-color-emissive carbon dots in a single reaction system by hydrothermal[J]. Adv. Sci., 2021, 8(1):2001453-1-8.
HU Y, YANG Z B, LU X, et al. Facile synthesis of red dual-emissive carbon dots for ratiometric fluorescence sensing and cellular imaging[J]. Nanoscale, 2020, 12(9):5494-5500.
GAO W L, SONG H H, WANG X, et al. Carbon dots with red emission for sensing of Pt2+,Au3+,and Pd2+ and their bioapplications in vitro and in vivo[J]. ACS Appl. Mater. Interfaces, 2018, 10(1):1147-1154.
HE W, WENG W T, SUN X Y, et al. Multifunctional carbon dots with solid-liquid state orange light emission for vitamin B12 sensing,cellular imaging,and red/white light-emitting diodes[J]. ACS Appl. Nano Mater., 2020, 3(8):7420-7427.
ZHANG X Q, YANG H Y, WAN Z J, et al. Self-quenching-resistant red emissive carbon dots with high stability for warm white light-emitting diodes with a high color rendering index[J]. Adv. Opt. Mater., 2020, 8(15):2000251-1-10.
LIU J J, GENG Y J, LI D W, et al. Deep red emissive carbonized polymer dots with unprecedented narrow full width at half maximum[J]. Adv. Mater., 2020, 32(17):1906641-1-9.
RECKMEIER C J, SCHNEIDER J, SUSHA A S, et al. Luminescent colloidal carbon dots∶optical properties and effects of doping [invited][J]. Opt. Express, 2016, 24(2):A312-A340.
EHRAT F, BHATTACHARYYA S, SCHNEIDER J, et al. Tracking the source of carbon dot photoluminescence∶aromatic domains versus molecular fluorophores[J]. Nano Lett., 2017, 17(12):7710-7716.
ZHU J Y, BAI X, CHEN X, et al. Spectrally tunable solid state fluorescence and room-temperature phosphorescence of carbon dots synthesized via seeded growth method[J]. Adv. Opt. Mater., 2019, 7(9):1801599-1-7.
NIE H, LI M J, LI Q S, et al. Carbon dots with continuously tunable full-color emission and their application in ratiometric pH sensing[J]. Chem. Mater., 2014, 26(10):3104-3112.
HOLÁ K, SUDOLSKÁ M, KALYTCHUK S, et al. Graphitic nitrogen triggers red fluorescence in carbon dots[J]. ACS Nano, 2017, 11(12):12402-12410.
GUO L, GE J C, LIU W M, et al. Tunable multicolor carbon dots prepared from well-defined polythiophene derivatives and their emission mechanism[J]. Nanoscale, 2016, 8(2):729-734.
PERMATASARI F A, FUKAZAWA H, OGI T, et al. Design of pyrrolic-N-rich carbon dots with absorption in the first near-infrared window for photothermal therapy[J]. ACS Appl. Nano Mater., 2018, 1(5):2368-2375.
WANG H, HAYDEL P, SUI N, et al. Wide emission shifts and high quantum yields of solvatochromic carbon dots with rich pyrrolic nitrogen[J]. Nano Res., 2020, 13(9):2492-2499.
PANG L F, WU H, FU M J, et al. Red emissive boron and nitrogen co-doped “on-off-on” carbon dots for detecting and imaging of mercury(Ⅱ) and biothiols[J]. Microchim. Acta, 2019, 186(11):708-1-9.
DING H Z, XU J H, JIANG L, et al. Fluorine-defects induced solid-state red emission of carbon dots with an excellent thermosensitivity[J]. Chin. Chem. Lett., 2021, doi: 10.1016/j.cclet.2021.04.033http://doi.org/10.1016/j.cclet.2021.04.033.
XU Q, SU R G, CHEN Y S, et al. Metal charge transfer doped carbon dots with reversibly switchable,ultra-high quantum yield photoluminescence[J]. ACS Appl. Nano Mater., 2018, 1(4):1886-1893.
YANG S H, SUN X H, WANG Z Y, et al. Anomalous enhancement of fluorescence of carbon dots through lanthanum doping and potential application in intracellular imaging of ferric ion[J]. Nano Res., 2018, 11(3):1369-1378.
WANG B L, YU Y, ZHANG H Y, et al. Carbon dots in a matrix∶energy-transfer-enhanced room-temperature red phosphorescence[J]. Angew. Chem. Int. Ed., 2019, 58(51):18443-18448.
DING H, YU S B, WEI J S, et al. Full-color light-emitting carbon dots with a surface-state-controlled luminescence mechanism[J]. ACS Nano, 2016, 10(1):484-491.
NGUYEN H A, SRIVASTAVA I, PAN D, et al. Unraveling the fluorescence mechanism of carbon dots with sub-single-particle resolution[J]. ACS Nano, 2020, 14(5):6127-6137.
KUNDELEV E V, TEPLIAKOV N V, LEONOV M Y, et al. Toward bright red-emissive carbon dots through controlling interaction among surface emission centers[J]. J. Phys. Chem. Lett., 2020, 11(19):8121-8127.
YAN X, SONG Y, ZHU C Z, et al. MnO2 nanosheet-carbon dots sensing platform for sensitive detection of organophosphorus pesticides[J]. Anal. Chem., 2018, 90(4):2618-2624.
ZHU P P, CHENG Z, DU L L, et al. Synthesis of the Cu-doped dual-emission fluorescent carbon dots and its analytical application[J]. Langmuir, 2018, 34(34):9982-9989.
LIU J J, LU S Y, TANG Q L, et al. One-step hydrothermal synthesis of photoluminescent carbon nanodots with selective antibacterial activity against porphyromonas gingivalis[J]. Nanoscale, 2017, 9(21):7135-7142.
TONG X, ZHU Y F, TONG C Y, et al. Simultaneous sensing γ-glutamyl transpeptidase and alkaline phosphatase by robust dual-emission carbon dots[J]. Anal. Chim. Acta, 2021, 1178:338829.
ZHAO J L, LUO Q Y, RUAN Q, et al. Red/green tunable-emission carbon nanodots for smart visual precision pH sensing[J]. Chem. Mater., 2021, 33(15):6091-6098.
HASSAN M, GOMES V G, DEHGHANI A, et al. Engineering carbon quantum dots for photomediated theranostics[J]. Nano Res., 2018, 11(1):1-41.
TAO H Q, YANG K, MA Z, et al. In vivo NIR fluorescence imaging,biodistribution,and toxicology of photoluminescent carbon dots produced from carbon nanotubes and graphite[J]. Small, 2012, 8(2):281-290.
LIU C, BAO L, TANG B, et al. Fluorescence-converging carbon nanodots-hybridized silica nanosphere[J]. Small, 2016, 12(34):4702-4706.
QU D, SUN Z C. The formation mechanism and fluorophores of carbon dots synthesized via a bottom-up route[J]. Mater. Chem. Front., 2020, 4(2):400-420.
LI Y, ZHAO Y, CHENG H H, et al. Nitrogen-doped graphene quantum dots with oxygen-rich functional groups[J]. J. Am. Chem. Soc., 2012, 134(1):15-18.
QU D, YANG D X, SUN Y K, et al. White emissive carbon dots actuated by the H-/J-aggregates and Förster resonance energy transfer[J]. J. Phys. Chem. Lett., 2019, 10(14):3849-3857.
LIU J, LIU Y, LIU N Y, et al. Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway[J]. Science, 2015, 347(6225):970-974.
HUA X W, BAO Y W, ZENG J, et al. Nucleolus-targeted red emissive carbon dots with polarity-sensitive and excitation-independent fluorescence emission∶high-resolution cell imaging and in vivo tracking[J]. ACS Appl. Mater. Interfaces, 2019, 11(36):32647-32658.
SUN Y Q, QIN H Y, GENG X, et al. Rational design of far-red to near-infrared emitting carbon dots for ultrafast lysosomal polarity imaging[J]. ACS Appl. Mater. Interfaces, 2020, 12(28):31738-31744.
JIANG L, DING H Z, XU M S, et al. UV-Vis-NIR full-range responsive carbon dots with large multiphoton absorption cross sections and deep-red fluorescence at nucleoli and in vivo[J]. Small, 2020, 16(19):2000680-1-9.
MIAO X, YAN X L, QU D, et al. Red emissive sulfur,nitrogen codoped carbon dots and their application in ion detection and theraonostics[J]. ACS Appl. Mater. Interfaces, 2017, 9(22):18549-18556.
GENG B J, SHEN W W, FANG F L, et al. Enriched graphitic N dopants of carbon dots as F cores mediate photothermal conversion in the NIR-Ⅱ window with high efficiency[J]. Carbon, 2020, 162:220-233.
CHUNG Y J, LEE C H, LIM J, et al. Photomodulating carbon dots for spatiotemporal suppression of alzheimer's β-amyloid aggregation[J]. ACS Nano, 2020, 14(12):16973-16983.
ZHANG T Y, ZHAO F F, LI L, et al. Tricolor white-light-emitting carbon dots with multiple-cores@shell structure for WLED application[J]. ACS Appl. Mater. Interfaces, 2018, 10(23):19796-19805.
ZHAI Y L, ZHU Z J, ZHOU S S, et al. Recent advances in spectroelectrochemistry[J]. Nanoscale, 2018, 10(7):3089-3111.
DING H, WEI J S, ZHANG P, et al. Solvent-controlled synthesis of highly luminescent carbon dots with a wide color gamut and narrowed emission peak widths[J]. Small, 2018, 14(22):1800612-1-10.
YUAN F L, HE P, XI Z F, et al. Highly efficient and stable white LEDs based on pure red narrow bandwidth emission triangular carbon quantum dots for wide-color gamut backlight displays[J]. Nano Res., 2019, 12(7):1669-1674.
LI X X, WANG Z F, LIU Y, et al. Bright tricolor ultrabroad-band emission carbon dots for white light-emitting diodes with a 96.5 high color rendering index[J]. J. Mater. Chem. C, 2020, 8(4):1286-1291.
0
浏览量
1265
下载量
4
CSCD
关联资源
相关文章
相关作者
相关机构