浏览全部资源
扫码关注微信
1.辽宁师范大学 物理与电子技术学院,辽宁 大连 116029
2.大连理工大学 微电子学院,辽宁 大连 116024
[ "冯秋菊(1977-),女,辽宁大连人,博士,副教授,2006年于中国科学院长春光学精密机械与物理研究所获得博士学位,主要从事宽带隙半导体材料和器件的研究。E-mail: qjfeng@dlut.edu.cn" ]
纸质出版日期:2021-11-01,
收稿日期:2021-09-01,
修回日期:2021-09-14,
扫 描 看 全 文
冯秋菊, 解金珠, 董增杰, 等. 单根磷掺杂β-Ga2O3微米线日盲紫外探测器性能[J]. 发光学报, 2021,42(11):1653-1660.
Qiu-ju FENG, Jin-zhu XIE, Zeng-jie DONG, et al. Performance of A Single Phosphorus-doped β-Ga2O3 Microwire Solar-blind Ultraviolet Photodetector[J]. Chinese Journal of Luminescence, 2021,42(11):1653-1660.
冯秋菊, 解金珠, 董增杰, 等. 单根磷掺杂β-Ga2O3微米线日盲紫外探测器性能[J]. 发光学报, 2021,42(11):1653-1660. DOI: 10.37188/CJL.20210291.
Qiu-ju FENG, Jin-zhu XIE, Zeng-jie DONG, et al. Performance of A Single Phosphorus-doped β-Ga2O3 Microwire Solar-blind Ultraviolet Photodetector[J]. Chinese Journal of Luminescence, 2021,42(11):1653-1660. DOI: 10.37188/CJL.20210291.
β-Ga
2
O
3
是一种新兴的超宽带隙半导体材料,由于具有4.9 eV的带隙、较高的击穿电场(8 MV/cm)及较高的热稳定性和化学稳定性等优良特性,使其成为一种很有前途的半导体材料,在高功率电子器件、气体探测器和日盲紫外(UV)光电探测器等领域有着较为广阔的应用前景。本文采用化学气相沉积法(CVD)生长出大尺寸的厘米级磷掺杂β-Ga
2
O
3
微米线,并对微米线的表面形貌、晶体结构和成分进行了研究,发现微米线的长度可达0.6~1 cm,直径约为40 μm。基于生长出的磷掺杂β-Ga
2
O
3
微米线制作了单根磷掺杂微米线的日盲紫外探测器,研究表明未掺杂和磷掺杂β-Ga
2
O
3
微米线对254 nm紫外光都具有良好的响应,其中磷含量为2.3%微米线制作的器件,其光电探测性能最好。该磷含量微米线器件在光功率550 μW/cm
2
时,其光电流为3.1 μA,暗电流为1.56 nA,光暗电流比约为2×10
3
,上升和下降时间分别为47 ms和31 ms。当光功率为100 μW/cm
2
时,器件的光响应度和外量子效率最大,分别为6.57 A/W和3213%。此外,还对器件的紫外探测机理进行了研究。
Recently
ultraviolet(UV) photodetectors have aroused the widespread concern of researchers around the world for their wide applications in UV radiation detection
missile warning
flame detection
ozone monitoring
and environmental monitoring. Most of the solar-blind photodetectors have been realized based on the wide bandgap semiconductor materials
such as ZnMgO
AlGaN
diamond and β-Ga
2
O
3
. Compared with these semiconductor materials
β-Ga
2
O
3
is an emerging wide bandgap semiconductor that has attracted a large amount of interest due to its ultra-large bandgap of 4.9 eV in the solar-blind range
a high breakdown field of 8 MV/cm
and high thermal stability and chemical stability. In addition
the study shows that the impurity doping can significantly improve the electrical properties of β-Ga
2
O
3
materials. In this paper
large-scale centimeter-level phosphorus-doped β-Ga
2
O
3
microwires were grown by chemical vapor deposition method without any catalyst. The high purity Ga
2
O
3
P
2
O
5
graphite powders and O
2
were used as the source materials and reactant gas for the microwires growth. The surface morphology
crystal structure and composition of the microwires were studied. It was found that the length of the microwire about was 0.6-1 cm and the diameter was about 40 μm. In order to study the UV sensing characteristics of photodetector
we fabricated a metal-semiconductor-metal(MSM) structure solar-blind ultraviolet detector based on a single phosphorus doped β-Ga
2
O
3
microwires. The results show that both the undoped β-Ga
2
O
3
microwires and phosphorus doped β-Ga
2
O
3
microwires have good responses to 254 nm UV light
and the photocurrent value of the device made of the microwire with phosphorus content of 2.3% is the highest. Further photoelectric test of the phosphorus doped device shows that when the optical power is 550 μW/cm
2
the photocurrent is 3.1 μA
the dark current is 1.56 nA
the photo-to-dark current ratio is about 2×10
3
the rise and fall time are 47 ms and 31 ms
respectively
and the responsivity reaches 2.8 A/W. When the optical power is 100 μW/cm
2
the optical responsivity and external quantum efficiency of the device are the largest
which are 6.57 A/W and 3213%
respectively. Meanwhile
the UV detection mechanism of the device was studied.
化学气相沉积磷掺杂β-Ga2O3微米线紫外探测器
chemical vapor depositionphosphorus-dopedβ-Ga2O3 microwireUV photodetector
GUO D Y, SHI H Z, QIAN Y P, et al. Fabrication of β-Ga2O3/ZnO heterojunction for solar-blind deep ultraviolet photodetection[J]. Semicond. Sci. Technol., 2017, 32(3): 03LT01-1-6.
ZHAO Y M, ZHANG J Y, JIANG D Y, et al. Ultraviolet photodetector based on a MgZnO film grown by radio-frequency magnetron sputtering[J]. ACS Appl. Mater. Interfaces, 2009, 1(11): 2428-2430.
WANG Y F, LI L, WANG H B, et al. An ultrahigh responsivity self-powered solar-blind photodetector based on a centimeter-sized β-Ga2O3/polyaniline heterojunction[J]. Nanoscale, 2020, 12(3): 1406-1413.
LI S, ZHI Y S, LU C, et al. Broadband ultraviolet self-powered photodetector constructed on exfoliated β-Ga2O3/CuI core-shell microwire heterojunction with superior reliability[J]. J. Phys. Chem. Lett., 2021, 12(1): 447-453.
LU Y J, LIN C N, SHAN C X. Optoelectronic diamond:growth, properties, and photodetection applications[J]. Adv. Opt. Mater., 2018, 6(20): 1800359-1-16.
CHEN Y C, LU Y J, LIN C N, et al. Self-powered diamond/β-Ga2O3 photodetectors for solar-blind imaging[J]. J. Mater. Chem. C, 2018, 6(21): 5727-5732.
TAKAGI T, TANAKA H, FUJITA S, et al. Molecular beam epitaxy of high magnesium content single-phase wurzite MgxZn1-xO alloys(x≃0.5) and their application to solar-blind region photodetectors[J]. Jpn. J. Appl. Phys., 2003, 42(48): L401-L403.
KOIKE K, HAMA K, NAKASHIMA I, et al. Molecular beam epitaxial growth of wide bandgap ZnMgO alloy films on(111)-oriented Si substrate toward UV-detector applications[J]. J. Cryst. Growth, 2005, 278(1-4): 288-292.
AN Y H, GUO D Y, LI Z M, et al. Dual-band photodetector with a hybrid Au-nanoparticles/β-Ga2O3 structure[J]. RSC Adv., 2016, 6(71): 66924-66929.
刘浩, 邓宏, 韦敏, 等. 氧化镓薄膜的制备及其日盲紫外探测性能研究[J]. 发光学报, 2015, 36(8): 906-911.
LIU H, DENG H, WEI M, et al. Preparation and ultraviolet detection performance of Ga2O3 Thin films[J]. Chin. J. Lumin., 2015, 36(8): 906-911. (in Chinese)
LEE S Y, CHOI K H, KANG H C. Growth mechanism of in-doped β-Ga2O3 nanowires deposited by radio frequency powder sputtering[J]. Mater. Lett., 2016, 176: 213-218.
JIN C, PARK S, KIM H, et al. Ultrasensitive multiple networked Ga2O3-core/ZnO-shell nanorod gas sensors[J]. Sens. Actuators B, 2012, 161(1): 223-228.
SASAKI K, HIGASHIWAKI M, KURAMATA A, et al. Si-ion implantation doping in β-Ga2O3 and its application to fabrication of low-resistance ohmic contacts[J]. Appl. Phys. Express, 2013, 6(8): 086502-1-5.
MI W, MA J, LI Z, et al. Characterization of Sn-doped β-Ga2O3 films deposited on MgO(100) substrate by MOCVD[J]. J. Mater. Sci.:Mater. Electron., 2015, 26(10): 7889-7894.
WU H H, HU Z F, LI B, et al. High-quality ZnO thin film grown on sapphire by hydrothermal method[J]. Mater. Lett., 2015, 161: 565-567.
VISWANATHA R, SAPRA S, SATPATI B, et al. Understanding the quantum size effects in ZnO nanocrystals[J]. J. Mater. Chem., 2004, 14(4): 661-668.
BAI S L, HU J W, LI D Q, et al. Quantum-sized ZnO nanoparticles:synthesis, characterization and sensing properties for NO2[J]. J. Mater. Chem., 2011, 21(33): 12288-12294.
冯秋菊, 李芳, 李彤彤, 等. 外电场辅助化学气相沉积方法制备网格状β-Ga2O3纳米线及其特性研究[J]. 物理学报, 2018, 67(21): 218101-1-6.
FENG Q J, LI F, LI T T, et al. Growth and characterization of grid-like β-Ga2O3 nanowires by electric field assisted chemical vapor deposition method[J]. Acta Phys. Sinica, 2018, 67: 218101-1-6. (in Chinese)
黄昆, 谢希德. 半导体物理学[M]. 北京: 科学出版社, 1958.
HUANG K, XIE X D. The Physics of Semiconductors[M]. Beijing: Science Press, 1958. (in Chinese)
KONG W Y, WU G A, WANG K Y, et al. Graphene-β-Ga2O3 heterojunction for highly sensitive deep UV photodetector application[J]. Adv. Mater., 2016, 28(48): 10725-10731
Guo X C, HAO N H, GUO D Y, et al. β-Ga2O3/p-Si heterojunction solar-blind ultraviolet photodetector with enhanced photoelectric responsivity[J]. J. Alloys Compd., 2016, 660: 136-140.
HSU C L, LU Y C. Fabrication of a transparent ultraviolet detector by using n-type Ga2O3 and p-type Ga-doped SnO2 core-shell nanowires[J]. Nanoscale, 2012, 4(18): 5710-5717.
PANDEESWARI R, JEYAPRAKASH B G. High sensing response of β-Ga2O3 thin film towards ammonia vapours: influencing factors at room temperature[J]. Sens. Actuators B, 2014, 195: 206-214.
0
浏览量
179
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构