浏览全部资源
扫码关注微信
1.河北大学 物理科学与技术学院,河北 保定 071002
2.西北大学 光子学与光子技术研究所,陕西 西安 710069
[ "赵皎印(1998-),女,山西运城人,硕士研究生,2020年于吕梁学院获得学士学位,主要从事近红外发光纳米材料及温传应用方面的研究。E-mail: zjy2466672590@163.com" ]
[ "索浩(1992-),男,河北保定人,博士,特聘教授,2019年于西北大学光子学与光子技术研究所获得博士学位,主要从事稀土发光材料方面的研究。E-mail: suo@hbu.edu.cn" ]
[ "郭崇峰(1975-),男,河南郑州人,博士,教授,博士研究生导师,2004年于中山大学获得博士学位,主要从事稀土发光材料方面的研究。E-mail: guocf@nwu.edu.cn" ]
纸质出版日期:2021-11-01,
收稿日期:2021-08-07,
修回日期:2021-08-17,
移动端阅览
赵皎印, 索浩, 李磊朋, 等. 荧光热增强型稀土掺杂上转换发光材料研究进展[J]. 发光学报, 2021,42(11):1673-1685.
JIAO-YIN ZHAO, HAO SUO, LEI-PENG LI, et al. Recent Advances in Rare-earth Doped Upconverison Materials with Thermally-enhanced Emissions. [J]. Chinese journal of luminescence, 2021, 42(11): 1673-1685.
赵皎印, 索浩, 李磊朋, 等. 荧光热增强型稀土掺杂上转换发光材料研究进展[J]. 发光学报, 2021,42(11):1673-1685. DOI: 10.37188/CJL.20210265.
JIAO-YIN ZHAO, HAO SUO, LEI-PENG LI, et al. Recent Advances in Rare-earth Doped Upconverison Materials with Thermally-enhanced Emissions. [J]. Chinese journal of luminescence, 2021, 42(11): 1673-1685. DOI: 10.37188/CJL.20210265.
稀土掺杂上转换发光材料的荧光强度通常会随着温度上升而呈现明显的热猝灭现象,这对其在温度传感、防伪、显示等方面的应用产生了极大的障碍。最近,研究人员在实验中发现了上转换发光强度随温度升高而增强的特殊现象,并开展了大量工作揭示其内在机理以及可能影响热增强效应的因素。上转换热增强效应的机理探究和优化对于未来开发新型的稀土上转换发光材料提供了新颖的思路,也为稀土上转换发光材料的应用研究奠定了基础。本文对荧光热增强型稀土掺杂上转换发光材料的最新研究进展进行了简单总结和梳理,主要介绍了荧光热增强效应的内在机理以及潜在应用,并展望了未来研究中所面临的机遇和挑战。
Rare-earth doped upconversion materials generally feature serious thermal quenching as the temperature rising
which greatly limits their applications in optical thermometry
anti-counterfeiting
and display. Recently
unique thermal enhancement phenomenon of upconversion intensity has been detected by many groups
and great efforts have been devoted to revealing the mechanism and the influential factors. Meanwhile
the theoretical exploration and optimization of thermal enhancement effect open a novel and effective avenue for the rational design and applications of rare-earth doped upconversion materials. In this review
the recent advances in thermos-enhanced rare-earth ions doped upconversion materials are elaborately summarized from inner mechanism to possible applications
with the perspective and outlook in the emerging challenges in the future research.
稀土发光材料荧光热增强上转换发光纳米材料
rare-earth doped luminescence materialsthermal enhancement of luminescenceup-conversionnano-particles
AKIZUKI N, AOTA S, MOURI S, et al. Efficient near-infrared up-conversion photoluminescence in carbon nanotubes[J]. Nat. Commun., 2015, 6(1): 8920-1-6.
WANG X J, WANG Z J, ZHENG M J, et al. A dual-excited and dual near-infrared emission phosphor Mg14Ge5O24∶Cr3+, Cr4+ with a super broad band for biological detection[J]. Dalton Trans., 2021, 50(1): 311-322.
PEI P, CHEN Y, SUN C X, et al. X-ray-activated persistent luminescence nanomaterials for NIR-Ⅱ imaging[J]. Nat. Nanotechnol., 2021, 16(9): 1011-1018.
SUO H, ZHAO X Q, ZHANG Z Y, et al. Rational design of ratiometric luminescence thermometry based on thermally coupled levels for bioapplications[J]. Laser Photonics Rev., 2021, 15(1): 2000319-1-25.
HAASE M, SCHÄFER H. Upconverting nanoparticles[J]. Angew. Chem. Int. Ed., 2011, 50(26): 5808-5829.
CHEN B, WANG F. Emerging frontiers of upconversion nanoparticles[J]. Trends Chem., 2020, 2(5): 427-439.
ZHOU J, LIU Q, FENG W, et al. Upconversion luminescent materials:advances and applications[J]. Chem. Rev., 2015, 115(1): 395-465.
MA Y P, LAN W, XIE B, et al. An optical-thermal model for laser-excited remote phosphor with thermal quenching[J]. Int. J. Heat Mass Transf., 2018, 116: 694-702.
SHAO Q Y, ZHANG G T, OUYANG L L, et al. Emission color tuning of core/shell upconversion nanoparticles through modulation of laser power or temperature[J]. Nanoscale, 2017, 9(33): 12132-12141.
LEI L, DAI X R, CHENG Y, et al. Dual-mode color tuning based on upconversion core/triple-shell nanostructure[J]. J. Mater. Chem. C, 2019, 7(11): 3342-3350.
FAN X T, CHEN W B, XIN S Y, et al. Achieving long-term zero-thermal-quenching with the assistance of carriers from deep traps[J]. J. Mater. Chem. C, 2018, 6(12): 2978-2982.
LIU Z H, ZHOU T R, YANG C, et al. Tunable thermal quenching properties of Na3Sc2(PO4)3∶Eu2+ phosphors tailored by phase transformation details[J]. Dalton Trans., 2020, 49(11): 3615-3621.
KIM Y H, ARUNKUMAR P, KIM B Y, et al. A zero-thermal-quenching phosphor[J]. Nat. Mater., 2017, 16(5): 543-550.
LIU D, JIN Y H, LV Y, et al. A single-phase full-color emitting phosphor Na3Sc2(PO4)3∶Eu2+/Tb3+/Mn2+ with near-zero thermal quenching and high quantum yield for near-UV converted warm w-LEDs[J]. J. Am. Ceram. Soc., 2018, 101(12): 5627-5639.
WEI Q, DING J Y, WANG Y H. A novel tunable extra-broad yellow-emitting nitride phosphor with zero-thermal-quenching property[J]. Chem. Eng. J., 2020, 386: 124004.
XIE W Q, LI P P, WANG Y, et al. Zero thermal-quenching photoluminescence in fresnoite glass achieved with the assistance of carrier compensating and surface crystal clusters[J]. J. Mater. Chem. C, 2019, 7(28): 8655-8659.
SHI R, MARTINEZ E D, BRITES C D S, et al. Thermal enhancement of upconversion emission in nanocrystals:a comprehensive summary[J]. Phys. Chem. Chem. Phys., 2021, 23(1): 20-42.
ZHOU Y H, CHENG Y, HUANG Q G, et al. Abnormal thermally enhanced upconversion luminescence of lanthanide-doped phosphors:proposed mechanisms and potential applications[J]. J. Mater. Chem. C, 2021, 9(7): 2220-2230.
DOVE M T, FANG H.Negative thermal expansion and associated anomalous physical properties:review of the lattice dynamics theoretical foundation[J]. Rep. Prog. Phys., 2016, 79(6): 066503-1-50.
ZOU H, YANG X Q, CHEN B, et al. Thermal enhancement of upconversion by negative lattice expansion in orthorhombic Yb2W3O12[J]. Angew. Chem. Int. Ed., 2019, 58(48): 17255-17259.
ZOU H, CHEN B, HU Y F, et al. Simultaneous enhancement and modulation of upconversion by thermal stimulation in Sc2Mo3O12 crystals[J]. J. Phys. Chem. Lett., 2020, 11(8): 3020-3024.
LV H C, DU P, LUO L H, et al. Negative thermal expansion triggered anomalous thermal upconversion luminescence behaviors in Er3+/Yb3+-codoped Y2Mo3O12 microparticles for highly sensitive thermometry[J]. Mater. Adv., 2021, 2(8): 2642-2648.
CUI H Q, CAO Y Z, ZHANG Y H, et al. Thermal enhancement of up-conversion luminescence in Lu2W2.5Mo0.5O12∶Er3+, Yb3+ phosphors[J]. Ceram. Int., 2021, 47(15): 21271-21275.
REN B Y, CHEN B, ZHAO J X, et al. Synthesis of core-shell ScF3 nanoparticles for thermal enhancement of upconversion[J]. Chem. Mater., 2021, 33(1): 158-163.
HUANG F, YANG T, WANG S X, et al. Temperature sensitive cross relaxation between Er3+ ions in laminated hosts:a novel mechanism for thermochromic upconversion and high performance thermometry[J]. J. Mater. Chem. C, 2018, 6(45): 12364-12370.
XU W, ZHAO H, ZHANG Z G, et al. Highly sensitive optical thermometry through thermally enhanced near infrared emissions from Nd3+/Yb3+ codoped oxyfluoride glass ceramic[J]. Sens. Actuators B Chem., 2013, 178: 520-524.
SUO H, ZHAO X Q, ZHANG Z Y, et al. Ultra-sensitive optical nano-thermometer LaPO4∶Yb3+/Nd3+ based on thermo-enhanced NIR-to-NIR emissions[J]. Chem. Eng. J., 2020, 389: 124506.
JIA M C, FU Z L, LIU G F, et al. NIR-Ⅱ/Ⅲ luminescence ratiometric nanothermometry with phonon-tuned sensitivity[J]. Adv. Opt. Mater., 2020, 8(6): 1901173-1-7.
WANG Z J, CHRISTIANSEN J, WEZENDONK D, et al. Thermal enhancement and quenching of upconversion emission in nanocrystals[J]. Nanoscale, 2019, 11(25): 12188-12197.
DONG B, HUA R N, CAO B S, et al. Size dependence of the upconverted luminescence of NaYF4∶Er, Yb microspheres for use in ratiometric thermometry[J]. Phys. Chem. Chem. Phys., 2014, 16(37): 20009-20012.
HE D, GUO C F, JIANG S, et al. Optical temperature sensing properties of Yb3+-Er3+ co-doped NaLnTiO4(Ln=Gd, Y) up-conversion phosphors[J]. RSC Adv., 2015, 5(2): 1385-1390.
XIANG G T, XIA Q, LIU X T, et al. Optical thermometry based on the thermally coupled energy levels of Er3+ in upconversion materials[J]. Dalton Trans., 2020, 49(47): 17115-17120.
LI L P, QIN F, ZHOU Y, et al. Origin of the giant thermal enhancement of the Er3+ ion's 4I9/2-4I15/2 photoluminescence[J]. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2020, 229: 117862.
TREJGIS K, MACIEJEWSKA K, BEDNARKIEWICZ A, et al. Near-infrared-to-near-infrared excited-state absorption in LaPO4∶Nd3+ nanoparticles for luminescent nanothermometry[J]. ACS Appl. Nano Mater., 2020, 3(5): 4818-4825.
TREJGIS K, BEDNARKIEWICZ A, MARCINIAK L.Engineering excited state absorption based nanothermometry for temperature sensing and imaging[J]. Nanoscale, 2020, 12(7): 4667-4675.
DRABIK J, KOWALSKI R, MARCINIAK L.Enhancement of the sensitivity of single band ratiometric luminescent nanothermometers based on Tb3+ ions through activation of the cross relaxation process[J]. Sci. Rep., 2020, 10(1): 11190-1-11.
TREJGIS K, TIAN F, LI J, et al. The role of surface related quenching in the single band ratiometric approach based on excited state absorption processes in Nd3+ doped phosphors[J]. Mater. Res. Bull., 2021, 139: 111288.
CHEN G Y, QIU H L, PRASAD P N, et al. Upconversion nanoparticles:design, nanochemistry, and applications in theranostics[J]. Chem. Rev., 2014, 114(10): 5161-5214.
ZHOU J J, WEN S H, LIAO J Y, et al. Activation of the surface dark-layer to enhance upconversion in a thermal field[J]. Nat. Photonics, 2018, 12(3): 154-158.
HU Y Q, SHAO Q Y, ZHANG P G, et al. Mechanistic investigations on the dramatic thermally induced luminescence enhancement in upconversion nanocrystals[J]. J. Phys. Chem. C, 2018, 122(45): 26142-26152.
HU Y Q, SHAO Q Y, DENG X Y, et al. Thermally induced multicolor emissions of upconversion hybrids with large color shifts for anticounterfeiting applications[J]. J. Mater. Chem. C, 2019, 7(38): 11770-11775.
JI Z L, CHENG Y, CUI X S, et al. Heating-induced abnormal increase in Yb3+ excited state lifetime and its potential application in lifetime luminescence nanothermometry[J]. Inorg. Chem. Front., 2019, 6(1): 110-116.
LEI L, XIA J N, CHENG Y, et al. Enhancing negative thermal quenching effect via low-valence doping in two-dimensional confined core-shell upconversion nanocrystals[J]. J. Mater. Chem. C, 2018, 6(43): 11587-11592.
HU Y Q, SHAO Q Y, DONG Y, et al. Energy loss mechanism of upconversion core/shell nanocrystals[J]. J. Phys. Chem. C, 2019, 123(36): 22674-22679.
LI D D, SHAO Q Y, DONG Y, et al. Anomalous temperature-dependent upconversion luminescence of small-sized NaYF4∶Yb3+, Er3+ nanoparticles[J]. J. Phys. Chem. C, 2014, 118(39): 22807-22813.
CUI X S, CHENG Y, LIN H, et al. Size-dependent abnormal thermo-enhanced luminescence of ytterbium-doped nanoparticles[J]. Nanoscale, 2017, 9(36): 13794-13799.
ZHOU Y H, CHENG Y, XU J, et al. Thermo-enhanced upconversion luminescence in inert-core/active-shell UCNPs:the inert core matters[J]. Nanoscale, 2021, 13(13): 6569-6576.
MI C, ZHOU J J, WANG F, et al. Thermally enhanced NIR-NIR anti-Stokes emission in rare earth doped nanocrystals[J]. Nanoscale, 2019, 11(26): 12547-12552.
CHEN L, CHEN H, BAI G X, et al. Near-infrared excitation and emitting thermometer based on Nd3+ doped ytterbium molybdate with thermally enhanced emissions[J]. J. Lumin., 2020, 228: 117655.
SUO H, GUO C F, YANG Z, et al. Thermometric and optical heating bi-functional properties of upconversion phosphor Ba5Gd8Zn4O21∶Yb3+/Tm3+[J]. J. Mater. Chem. C, 2015, 3(28): 7379-7385.
KELLER E L, FRONTIERA R R. Ultrafast nanoscale Raman thermometry proves heating is not a primary mechanism for plasmon-driven photocatalysis[J]. ACS Nano, 2018, 12(6): 5848-5855.
MI C, ZHOU J J, WANG F, et al. Ultrasensitive ratiometric nanothermometer with large dynamic range and photostability[J]. Chem. Mater., 2019, 31(22): 9480-9487.
WANG Y B, LEI L, YE R G, et al. Integrating positive and negative thermal quenching effect for ultrasensitive ratiometric temperature sensing and anti-counterfeiting[J]. ACS Appl. Mater. Interfaces, 2021, 13(20): 23951-23959.
YU X W, ZHANG H Y, YU J H. Luminescence anti-counterfeiting:from elementary to advanced[J]. Aggregate, 2021, 2(1): 20-34.
YAO W J, TIAN Q Y, WU W. Tunable emissions of upconversion fluorescence for security applications[J]. Adv. Opt. Mater, 2019, 7(6): 1801171-1-19.
0
浏览量
722
下载量
11
CSCD
关联资源
相关文章
相关作者
相关机构