浏览全部资源
扫码关注微信
四川农业大学 食品学院,四川 雅安 625014
[ "钱玟(1997-),男,四川巴中人,硕士研究生,2019年于四川农业大学获得学士学位,主要从事食品检测荧光探针技术的研究。E-mail: 1980385367@qq.com" ]
[ "何利(1984-),女,重庆人,博士,副教授,硕士研究生导师,2011年于四川大学获得博士学位,主要从事食品资源综合利用、食品安全检测技术的研究。E-mail: helifood@163.com" ]
纸质出版日期:2021-11-01,
收稿日期:2021-08-04,
修回日期:2021-08-11,
扫 描 看 全 文
钱玟, 何利, 潘无双, 等. 猪骨氮掺杂碳量子点制备及其用于检测Co2+[J]. 发光学报, 2021,42(11):1818-1827.
Wen QIAN, Li HE, Wu-shuang PAN, et al. Preparation of Pig Bone Nitrogen-doped Carbon Quantum Dots and Application in Detection of Co2+[J]. Chinese Journal of Luminescence, 2021,42(11):1818-1827.
钱玟, 何利, 潘无双, 等. 猪骨氮掺杂碳量子点制备及其用于检测Co2+[J]. 发光学报, 2021,42(11):1818-1827. DOI: 10.37188/CJL.20210260.
Wen QIAN, Li HE, Wu-shuang PAN, et al. Preparation of Pig Bone Nitrogen-doped Carbon Quantum Dots and Application in Detection of Co2+[J]. Chinese Journal of Luminescence, 2021,42(11):1818-1827. DOI: 10.37188/CJL.20210260.
以猪骨和乙二胺为碳源和氮源,通过一步水热法合成了氮掺杂碳量子点(N-CQDs),并优化其制备条件。通过透射电子显微镜(TEM)、傅里叶变换红外光谱(FT-IR)、X射线衍射图(XRD)、紫外-可见吸收光谱(UV-Vis)和X射线光电子能谱(XPS)技术,研究了N-CQDs的结构和光学性质及元素组成。所制备的N-CQDs具有较高的量子产率(26.4%),平均粒径为2.34 nm,在365 nm紫外光照射下呈现出明亮的蓝色荧光。研究发现Co
2+
对N-CQDs有良好的猝灭作用,从而建立了一种快速检测Co
2+
的新方法。N-CQDs荧光猝灭强度与Co
2+
浓度在0~15 μg/mL和30~80 μg/mL呈良好的线性关系,检出限为20 μg/L,加标回收率为97.26%~109.14%
RSD
<
3.24%,能够应用于实际水样中Co
2+
含量的测定。
Nitrogen-doped carbon quantum dots(N-CQDs) were successfully synthesized using pig bone and ethylenediamine as carbon and nitrogen sources by one-step hydrothermal method. Structure
optical properties and element composition of N-CQDs have been studied by transmission electron microscope(TEM)
Fourier transform infrared spectroscopy(FT-IR)
X-ray diffractometer patterns(XRD)
UV-Vis absorption spectroscopy(UV-Vis) and X-ray photoelectron spectroscopy(XPS) technologies. The synthesized N-CQDs have a high quantum yield(26.4%)
an average particle size of 2.34 nm
showing bright blue fluorescence under a 365 nm UV lamp. The study found that Co
2+
had a good quenching effect on N-CQDs
so as to establish a new method for rapid detection of Co
2+
. The fluorescence quenching intensity of N-CQDs has a good linear relationship with the concentration of Co
2+
at 0-15 μg/mL and 30-80 μg/mL
the detection limit is 20 μg/L
and the recovery rate of standard addition is 97.26%-109.14%
RSD
<
3.24%
which can be applied to the determination of Co
2+
content in actual water samples.
氮掺杂碳量子点猪骨荧光检测Co2+
nitrogen-doped carbon quantum dotspig bonefluorescence detectionCo2+
TRUFFAULT L, TA M T, DEVERS T, et al. On the curve-fitting of XPS Ce(3d) spectra of cerium oxides by E. Paparazzo, Materials Research Bulletin 46(2011) 323-326[J]. Mater. Res. Bull., 2012, 47(11): 3941-3942.
WANG C, ZHOU J D, RAN G X, et al. Bi-functional fluorescent polymer dots:a one-step synthesis via controlled hydrothermal treatment and application as probes for the detection of temperature and Fe3+[J]. J. Mater. Chem. C, 2017, 5(2): 434-443.
ZHANG H J, CHEN Y L, LIANG M J, et al. Solid-phase synthesis of highly fluorescent nitrogen-doped carbon dots for sensitive and selective probing ferric ions in living cells[J]. Anal. Chem., 2014, 86(19): 9846-9852.
ZHU X H, ZHAO T B, NIE Z, et al. Nitrogen-doped carbon nanoparticle modulated turn-on fluorescent probes for histidine detection and its imaging in living cells[J]. Nanoscale, 2016, 8(4): 2205-2211.
AWUAL M R, ISMAEL M, YAITA T. Efficient detection and extraction of cobalt(Ⅱ) from lithium ion batteries and wastewater by novel composite adsorbent[J]. Sens. Actuators B Chem., 2014, 191: 9-18.
LIAO S, ZHU F W, ZHAO X Y, et al. A reusable P, N-doped carbon quantum dot fluorescent sensor for cobalt ion[J]. Sens. Actuators B Chem., 2018, 260: 156-164.
STOICA A I, PELTEA M, BAIULESCU G E, et al. Determination of cobalt in pharmaceutical products[J]. J. Pharm. Biomed. Anal., 2004, 36(3): 653-656.
SIMONSEN L O, HARBAK H, BENNEKOU P. Cobalt metabolism and toxicology—a brief update[J]. Sci. Total Environ., 2012, 432: 210-215.
TIAN M, ZHANG J Q, LIU Y M, et al. One-pot synthesis of nitrogen-doped carbon dots for highly sensitive determination of cobalt ions and biological imaging[J]. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2021, 252: 119541.
JING N, TIAN M, WANG Y T, et al. Nitrogen-doped carbon dots synthesized from acrylic acid and ethylenediamine for simple and selective determination of cobalt ions in aqueous media[J]. J. Lumin., 2019, 206: 169-175.
张崟, 卓勇贤, 张佳敏, 等. 猪骨利用的研究进展[J]. 农产品加工·学刊, 2010(11): 83-86.
ZHANG Y, ZHUO Y X, ZHANG J M, et al. Researches on application of pig bone[J]. Acad. Periodical Farm Products Process., 2010(11): 83-86. (in Chinese)
张正伟, 彭可睿, 陈建秋, 等. 生物质基碳量子点的制备及其光谱性质研究[J]. 生物质化学工程, 2014, 48(3): 30-35.
ZHANG Z W, PENG K R, CHEN J Q, et al. Preparation of carbon quantum dots by biologic matters and its spectrum properties[J]. Bio. Chem. Eng., 2014, 48(3): 30-35. (in Chinese)
LU M C, DUAN Y X, SONG Y H, et al. Green preparation of versatile nitrogen-doped carbon quantum dots from watermelon juice for cell imaging, detection of Fe3+ ions and cysteine, and optical thermometry[J]. J. Mol. Liq., 2018, 269: 766-774.
WANG C J, SHI H X, YANG M, et al. Facile synthesis of novel carbon quantum dots from biomass waste for highly sensitive detection of iron ions[J]. Mater. Res. Bull., 2020, 124: 110730-1-8.
LIN L P, RONG M C, LU S S, et al. A facile synthesis of highly luminescent nitrogen-doped graphene quantum dots for the detection of 2, 4, 6-trinitrophenol in aqueous solution[J]. Nanoscale, 2015, 7(5): 1872-1878.
HSU P C, CHANG H T. Synthesis of high-quality carbon nanodots from hydrophilic compounds:role of functional groups[J]. Chem. Commun., 2012, 48(33): 3984-3986.
SHEN T Y, JIA P Y, CHEN D S, et al. Hydrothermal synthesis of N-doped carbon quantum dots and their application in ion-detection and cell-imaging[J]. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2021, 248: 119282.
JOSEPH J, ANAPPARA A A. Ellagic acid-functionalized fluorescent carbon dots for ultrasensitive and selective detection of mercuric ions via quenching[J]. J. Lumin., 2017, 192: 761-766.
WU Z L, GAO M X, WANG T T, et al. A general quantitative pH sensor developed with dicyandiamide N-doped high quantum yield graphene quantum dots[J]. Nanoscale, 2014, 6(7): 3868-3874.
SUN D, BAN R, ZHANG P H, et al. Hair fiber as a precursor for synthesizing of sulfur- and nitrogen-co-doped carbon dots with tunable luminescence properties[J]. Carbon, 2013, 64: 424-434.
LIU W F, JIA H S, ZHANG J, et al. Preparation of nitrogen-doped carbon quantum dots(NCQDs) and application for non-enzymatic detection of glucose[J]. Microchem. J., 2020, 158: 105187.
GUO Y M, ZHANG L F, CAO F P, et al. Thermal treatment of hair for the synthesis of sustainable carbon quantum dots and the applications for sensing Hg2+[J]. Sci. Rep., 2016, 6: 35795-1-7.
QI H J, TENG M, LIU M, et al. Biomass-derived nitrogen-doped carbon quantum dots:highly selective fluorescent probe for detecting Fe3+ ions and tetracyclines[J]. J. Colloid Interface Sci., 2019, 539: 332-341.
TANG Y, RAO L S, LI Z T, et al. Rapid synthesis of highly photoluminescent nitrogen-doped carbon quantum dots via a microreactor with foamy copper for the detection of Hg2+ ions[J]. Sens. Actuators B Chem., 2018, 258: 637-647.
LU D, TANG Y P, GAO J W, et al. Concentrated solar irradiation protocols for the efficient synthesis of tri-color emissive carbon dots and photophysical studies[J]. J. Mater. Chem. C, 2018, 6(47): 13013-13022.
NIU W J, LI Y, ZHU R H, et al. Ethylenediamine-assisted hydrothermal synthesis of nitrogen-doped carbon quantum dots as fluorescent probes for sensitive biosensing and bioimaging[J]. Sens. Actuators B Chem., 2015, 218: 229-236.
HU X T, LI Y X, XU Y W, et al. Green one-step synthesis of carbon quantum dots from orange peel for fluorescent detection of Escherichia coli in milk[J]. Food Chem., 2021, 339: 127775.
LIU W, DIAO H P, CHANG H H, et al. Green synthesis of carbon dots from rose-heart radish and application for Fe3+ detection and cell imaging[J]. Sens. Actuators B Chem., 2017, 241: 190-198.
ZHAO C X, JIAO Y, HU F, et al. Green synthesis of carbon dots from pork and application as nanosensors for uric acid detection[J]. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2018, 190: 360-367.
RAMEZANI Z, QORBANPOUR M, RAHBAR N. Green synthesis of carbon quantum dots using quince fruit(Cydonia oblonga) powder as carbon precursor:application in cell imaging and As3+ determination[J]. Colloids Surfaces A Physicochem. Eng. Aspects, 2018, 549: 58-66.
LIU X, YANG Y, LI Q, et al. Portably colorimetric paper sensor based on ZnS quantum dots for semi-quantitative detection of Co2+ through the measurement of grey level[J]. Sens. Actuators B Chem., 2018, 260: 1068-1075.
LIU X, WEI S G, DIAO Q P, et al. Hydrothermal synthesis of N-doped carbon dots for selective fluorescent sensing and cellular imaging of cobalt(Ⅱ)[J]. Microchim. Acta, 2017, 184(10): 3825-3831.
TIAN M, LIU Y M, WANG Y T, et al. Facile synthesis of yellow fluorescent carbon dots for highly sensitive sensing of cobalt ions and biological imaging[J]. Anal. Methods, 2019, 11(32): 4077-4083.
ATCHUDAN R, EDISON T N J I, PERUMAL S, et al. Betel-derived nitrogen-doped multicolor carbon dots for environmental and biological applications[J]. J. Mol. Liq., 2019, 296: 111817.
KONG D P, YAN F Y, HAN Z Y, et al. Cobalt(Ⅱ) ions detection using carbon dots as an sensitive and selective fluorescent probe[J]. RSC Adv., 2016, 6(72): 67481-67487.
ZHANG M, LIU Y Q, YE B C. Colorimetric assay for parallel detection of Cd2+, Ni2+ and Co2+ using peptide-modified gold nanoparticles[J]. Analyst, 2012, 137(3): 601-607.
CHEN Y M, SHANG P X, DONG Y Q, et al. Regulating the overlap between the absorption spectrum of metal ion-chromogenic agent and the emission spectrum of carbon-based dots to improve the sensing performance for metal ions[J]. Sens. Actuators B Chem., 2017, 242: 1210-1215.
SUN L L, LIU Y Y, WANG Y S, et al. Nitrogen and sulfur co-doped carbon dots as selective and visual sensors for monitoring cobalt ions[J]. Opt. Mater., 2021, 112: 110787.
0
浏览量
134
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构