浏览全部资源
扫码关注微信
太原理工大学 物理与光电工程学院,山西 太原 030024
[ "冯凯(1996-),男,山西太原人,硕士研究生,2018年于山西大同大学获得学士学位,主要从事微纳光电子器件方面的研究。E-mail: 994843584@qq.com" ]
[ "冯琳(1984-),女,山西朔州人,博士,副教授,2011年于中国科学院物理研究所获得博士学位,主要从事微纳光电子器件方面的研究。E-mail: fenglin@tyut.edu.cn" ]
[ "崔艳霞(1984-),女,山西吕梁人,博士,教授,博士研究生导师,2011年于浙江大学获得博士学位,主要从事微纳光子与光电子学领域(包括表面等离激元纳米器件、有机及钙钛矿光电探测器及钙钛矿激光器等)的研究。E-mail: yanxiacui@gmail.com" ]
纸质出版日期:2021-11-01,
收稿日期:2021-07-28,
修回日期:2021-08-18,
移动端阅览
冯凯, 冯琳, 李国辉, 等. 黑磷二维材料制备及其光电子器件研究进展[J]. 发光学报, 2021,42(11):1686-1700.
KAI FENG, LIN FENG, GUO-HUI LI, et al. Research Progress on Fabrication of Thin Black Phosphorus Materials and Its Optoelectronic Devices. [J]. Chinese journal of luminescence, 2021, 42(11): 1686-1700.
冯凯, 冯琳, 李国辉, 等. 黑磷二维材料制备及其光电子器件研究进展[J]. 发光学报, 2021,42(11):1686-1700. DOI: 10.37188/CJL.20210252.
KAI FENG, LIN FENG, GUO-HUI LI, et al. Research Progress on Fabrication of Thin Black Phosphorus Materials and Its Optoelectronic Devices. [J]. Chinese journal of luminescence, 2021, 42(11): 1686-1700. DOI: 10.37188/CJL.20210252.
传统半导体材料随着器件尺寸的减小,会出现热效应、尺寸效应等现象,导致器件性能下降甚至失效。为了解决这些问题,研究者们寻求新的材料来代替传统半导体材料。黑磷作为一种p型二维材料,不但具有直接带隙,而且具有高载流子迁移率,得到了广泛研究。本综述介绍了黑磷的几种常见制备方法,如机械剥离法、液相剥离法等,总结了黑磷在太阳电池、光电探测器、场效应晶体管领域的应用现状。最后,对黑磷未来的发展进行了展望。
With the decrease of device size
traditional semiconductor materials will have thermal effect
size effect and other phenomena. These phenomena lead to the decline of the device performances and even the failure of the devices. To solve these problems
researchers are looking for new materials to replace traditional semiconductor materials. Black phosphorus is a p-type two-dimensional material with direct band gap and high carrier mobility
which has been extensively studied by researchers. This review first introduces the preparation methods of black phosphorus materials
such as mechanical exfoliation
liquid mechanical exfoliation
etc
. Then
the application status of black phosphorus in solar cells
photodetectors
and field effect transistors is introduced. Finally
the prospect of black phosphorus materials in future is presented.
二维材料黑磷太阳电池光电探测器场效应晶体管
two-dimensional materialsblack phosphorussolar cellphotodetectorfield effect transistor
MIAO J S, ZHANG L, WANG C, et al. Black phosphorus electronic and optoelectronic devices[J]. 2D Mater., 2019, 6(3): 032003.
李怀辉, 王小平, 王丽军, 等. 硅半导体太阳能电池进展[J]. 材料导报, 2011, 25(19): 49-53.
LI H H, WANG X P, WANG L J, et al. Progress of silicon solar cell[J]. Mater. Rep., 2011, 25(19): 49-53. (in Chinese)
POP E. Energy dissipation and transport in nanoscale devices[J]. Nano Res., 2010, 3(3): 147-169.
SAHA P, BANERJEE P, DASH D K, et al. Exploring the short-channel characteristics of asymmetric junctionless double-gate silicon-on-nothing MOSFET[J]. J. Mater. Eng. Perform., 2018, 27(6): 2708-2712.
NOVOSELOV K S, GEIM A K, MOROZOV SV, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669.
韩丽锦, 马雪, 张源涛, 等. 醋酸铯合成CsPbBr3全无机钙钛矿量子点及薄膜发光特性[J]. 发光学报, 2020, 41(11): 1367-1375.
HAN L J, MA X, ZHANG Y T, et al. Luminescence properties of all inorganic perovskite CsPbBr3 quantum dots and film synthesized by cesium acetate[J]. Chin. J. Lumin., 2020, 41(11): 1367-1375. (in Chinese)
WANG Y X, WU W D, ZHAO Z R. Recent progress and remaining challenges of 2D material-based terahertz detectors[J]. Infrared Phys. Technol., 2019, 102: 103024.
吴江, 曹冠英, 张彦杰, 等. CsPbBr3钙钛矿量子点微晶的制备及发光性能[J]. 发光学报, 2019, 40(9): 1073-1078.
WU J, CAO G Y, ZHANG Y J, et al. Preparation and luminescence properties of CsPbBr3 perovskite quantum dot microcrystals[J]. Chin. J. Lumin., 2019, 40(9): 1073-1078. (in Chinese)
闻雷, 刘成名, 宋仁升, 等. 石墨烯材料的储锂行为及其潜在应用[J]. 化学学报, 2014, 72(3): 333-344.
WEN L, LIU C M, SONG R S, et al. Lithium storage characteristics and possible applications of graphene materials[J]. Acta Chim. Sinica, 2014, 72(3): 333-344. (in Chinese)
URICH A, UNTERRAINER K, MUELLER T, et al. Intrinsic response time of graphene photodetectors[J]. Nano Lett., 2011, 11(7): 2804-2808.
WINNERL S, ORLITA M, PLOCHOCKA P, et al. Carrier relaxation in epitaxial graphene photoexcited near the dirac point[J]. Phys. Rev. Lett., 2011, 107(23): 237401-1-5.
YU H, LIAO M Z, ZHAO W J, et al. Wafer-scale growth and transfer of highly-oriented monolayer MoS2 continuous films[J]. ACS Nano, 2017, 11(12): 12001-12007.
汤鹏, 肖坚坚, 郑超, 等. 类石墨烯二硫化钼及其在光电子器件上的应用[J]. 物理化学学报, 2013, 29(4): 667-677.
TANG P, XIAO J J, ZHENG C, et al. Graphene-like molybdenum disulfide and its application in optoelectronic devices[J]. Acta Phys. -Chim. Sinica, 2013, 29(4): 667-677. (in Chinese)
POH S M, ZHAO X X, TAN S J R, et al. Molecular beam epitaxy of highly crystalline MoSe2 on hexagonal boron nitride[J]. ACS Nano, 2018, 12(8): 7562-7570.
RADISAVLJEVIC B, RADENOVIC A, BRIVIO J, et al. Single-layer MoS2 transistors[J]. Nat. Nanotechnol., 2011, 6(3): 147-150.
SMITHE K K H, ENGLISH C D, SURYAVANSHI S V, et al. High-field transport and velocity saturation in synthetic monolayer MoS2[J]. Nano Lett., 2018, 18(7): 4516-4522.
KOMSA H P, KRASHENINNIKOV A V. Native defects in bulk and monolayer MoS2 from first principles[J]. Phys. Rev. B, 2015, 91(12): 125304-1-17.
崔向红, 陈怀银, 杨涛. 纳米尺寸二硫化钼的制备与应用研究进展[J]. 化学学报, 2016, 74(5): 392-400.
CUI X H, CHEN H Y, YANG T. Research progress on the preparation and application of nano-sized molybdenum disulfide[J]. Acta Chim. Sinica, 2016, 74(5): 392-400. (in Chinese)
马晓轩, 郝健, 李垚, 等. 类石墨烯二硫化钼在锂离子电池负极材料中的研究进展[J]. 材料导报, 2014, 28(11): 1-9.
MA X X, HAO J, LI Y, et al. Research progress of 2H-MoS2 based materials in the application to lithium ion batteries anodes[J]. Mater. Rep., 2014, 28(11): 1-9. (in Chinese)
LIU H, DU Y C, DENG Y X, et al. Semiconducting black phosphorus:synthesis, transport properties and electronic applications[J]. Chem. Soc. Rev., 2015, 44(9): 2732-2743.
金旭, 汤立红, 宁平, 等. 黑磷烯制备与应用研究进展[J]. 材料导报, 2016, 30(11): 149-155.
JIN X, TANG L H, NING P, et al. Research progress on fabrication and application of phosphorene[J]. Mater. Rep., 2016, 30(11): 149-155. (in Chinese)
聂萌, 郭安琪, 陈佳琦, 等. 基于黑磷烯/氧化石墨烯双介质层的柔性电容式压力传感器[J]. 传感技术学报, 2019, 32(4): 481-484.
NIE M, GUO A Q, CHEN J Q, et al. Flexible capacitive pressure sensor based on phosphene/graphene oxide double dielectric layers[J]. Chin. J. Sens. Actuators, 2019, 32(4): 481-484. (in Chinese)
覃信茂, 窦忠宇, 陈少波, 等. 磷烯制备及应用的研究进展[J]. 电子元件与材料, 2016, 35(5): 7-10.
QIN X M, DOU Z Y, CHEN S B, et al. Research progress in preparation and application of phosphorene[J]. Electron. Compon. Mater., 2016, 35(5): 7-10. (in Chinese)
FEI R X, YANG L. Strain-engineering the anisotropic electrical conductance of few-layer black phosphorus[J]. Nano Lett., 2014, 14(5): 2884-2889.
JAIN A, MCGAUGHEY A J H. Strongly anisotropic in-plane thermal transport in single-layer black phosphorene[J]. Sci. Rep., 2015, 5(1): 8501-1-5.
LIU X L, RYDER C R, WELLS S A, et al. Resolving the in-plane anisotropic properties of black phosphorus[J]. Small Methods, 2017, 1(6): 1700143-1-9.
WANG X M, JONES A M, SEYLER K L, et al. Highly anisotropic and robust excitons in monolayer black phosphorus[J]. Nat. Nanotechnol., 2015, 10(6): 517-521.
LI L K, YU Y J, YE G J, et al. Black phosphorus field-effect transistors[J]. Nat. Nanotechnol., 2014, 9(5): 372-377.
WU S X, HUI K S, HUI K N. 2D black phosphorus:from preparation to applications for electrochemical energy storage[J]. Adv. Sci., 2018, 5(5): 1700491-1-28.
XING B R, GUAN L, YU Y, et al. HfO2-passivated black phosphorus field effect transistor with long-termed stability and enhanced current on/off ratio[J]. Nanotechnology, 2019, 30(34): 345208.
TIAN H, GUO Q S, XIE Y J, et al. Anisotropic black phosphorus synaptic device for neuromorphic applications[J]. Adv. Mater., 2016, 28(25): 4991-4997.
张晓萍, 邵波, 牛燕燕, 等. 黑磷烯在光电化学和生物医学领域的应用研究进展[J]. 海南师范大学学报(自然科学版), 2020, 33(2): 119-125.
ZHANG X P, SHAO B, NIU Y Y, et al. Research progresses on application of black phosphorene in photoelectrochemistry and biomedicine[J]. J. Hainan Norm. Univ. (Nat. Sci.), 2020, 33(2): 119-125. (in Chinese)
王倩, 张燕, 王波, 等. 黑磷及黑磷烯在储能领域的应用研究进展[J]. 化工新型材料, 2017, 45(3): 40-42.
WANG Q, ZHANG Y, WANG B, et al. Research progress of black phosphorus and phosphorene for application in energy storage[J]. New Chem. Mater., 2017, 45(3): 40-42. (in Chinese)
赵冬梅, 李振伟, 刘领弟, 等. 石墨烯/碳纳米管复合材料的制备及应用进展[J]. 化学学报, 2014, 72(2): 185-200.
ZHAO D M, LI Z W, LIU L D, et al. Progress of preparation and application of graphene/carbon nanotube composite materials[J]. Acta Chim. Sinica, 2014, 72(2): 185-200. (in Chinese)
LING X, WANG H, HUANG S X, et al. The renaissance of black phosphorus[J]. Proc. Natl. Acad. Sci. USA, 2015, 112(15): 4523-4530.
TRAN V, SOKLASKI R, LIANG Y F, et al. Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus[J]. Phys. Rev. B, 2014, 89(23): 235319-1-6.
TIAN Y, WANG H D, LI H N, et al. Recent advances in black phosphorus/carbon hybrid composites:from improved stability to applications[J]. J. Mater. Chem. A, 2020, 8(9): 4647-4676.
XIA F N, WANG H, JIA Y C. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics[J]. Nat. Commun., 2014, 5(1): 4458-1-6.
LIU Y, LOW T, RUDEN P P. Mobility anisotropy in monolayer black phosphorus due to scattering by charged impurities[J]. Phys. Rev. B, 2016, 93(16): 165402-1-5.
朱晋潇, 刘晓东, 薛敏钊, 等. 磷烯的制备、结构、性质及器件应用[J]. 物理化学学报, 2017, 33(11): 2153-2172.
ZHU J X, LIU X D, XUE M Z, et al. Phosphorene:synthesis, structure, properties and device applications[J]. Acta Phys.-Chim. Sinica, 2017, 33(11): 2153-2172. (in Chinese)
CASTELLANOS-GOMEZ A, VICARELLI L, PRADA E, et al. Isolation and characterization of few-layer black phosphorus[J]. 2D Mater., 2014, 1(2): 025001-1-19.
LU W L, NAN H Y, HONG J H, et al. Plasma-assisted fabrication of monolayer phosphorene and its Raman characterization[J]. Nano Res., 2014, 7(6): 853-859.
AMBROSI A, SOFER Z, PUMERA M. Electrochemical exfoliation of layered black phosphorus into phosphorene[J]. Angew. Chem. Int. Ed., 2017, 56(35): 10443-10445.
ERANDE M B, PAWAR M S, LATE D J. Humidity sensing and photodetection behavior of electrochemically exfoliated atomically thin-layered black phosphorus nanosheets[J]. ACS Appl. Mater. Interfaces, 2016, 8(18): 11548-11556.
HUANG Z D, HOU H S, ZHANG Y, et al. Layer-tunable phosphorene modulated by the cation insertion rate as a sodium-storage anode[J]. Adv. Mater., 2017, 29(34): 1702372-1-7.
BRENT J R, SAVJANI N, LEWIS E A, et al. Production of few-layer phosphorene by liquid exfoliation of black phosphorus[J]. Chem. Commun., 2014, 50(87): 13338-13341.
YASAEI P, KUMAR B, FOROOZAN T, et al. High-quality black phosphorus atomic layers by liquid-phase exfoliation[J]. Adv. Mater., 2015, 27(11): 1887-1892.
CHEN L, ZHOU G M, LIU Z B, et al. Scalable clean exfoliation of high-quality few-layer black phosphorus for a flexible lithium Ion battery[J]. Adv. Mater., 2016, 28(3): 510-517.
ZHAO W C, XUE Z M, WANG J F, et al. Large-scale, highly efficient, and green liquid-exfoliation of black phosphorus in ionic liquids[J]. ACS Appl. Mater. Interfaces, 2015, 7(50): 27608-27612.
LI X S, DENG B C, WANG X M, et al. Synthesis of thin-film black phosphorus on a flexible substrate[J]. 2D Mater., 2015, 2(3): 031002.
SMITH J B, HAGAMAN D, JI H F. Growth of 2D black phosphorus film from chemical vapor deposition[J]. Nanotechnology, 2016, 27(21): 215602-1-8.
LI C, WU Y, DENG B C, et al. Synthesis of crystalline black phosphorus thin film on sapphire[J]. Adv. Mater., 2018, 30(6): 1703748-1-8.
WU Z H, LYU Y X, ZHANG Y, et al. Large-scale growth of few-layer two-dimensional black phosphorus[J]. Nat. Mater., 2021, 20(9): 1203-1209.
ZHANG Y Y, RUI X H, TANG Y X, et al. Wet-chemical processing of phosphorus composite nanosheets for high-rate and high-capacity lithium-ion batteries[J]. Adv. Energy Mater., 2016, 6(10): 1502409-1-9.
ZHAO G, WANG T L, SHAO Y L, et al. A novel mild phase-transition to prepare black phosphorus nanosheets with excellent energy applications[J]. Small, 2017, 13(7): 1602243.
KIM J S, LIU Y N, ZHU W N, et al. Toward air-stable multilayer phosphorene thin-films and transistors[J]. Sci. Rep., 2015, 5(1): 8989-1-7.
WU D Z, PENG Z J, JIN C H, et al. Effective passivation of black phosphorus transistor against ambient degradation by an ultra-thin tin oxide film[J]. Sci. Bull., 2019, 64(9): 570-574.
KIM J, BAEK S K, KIM K S, et al. Long-term stability study of graphene-passivated black phosphorus under air exposure[J]. Curr. Appl. Phys., 2016, 16(2): 165-169.
CHEN X L, WU Y Y, WU Z F, et al. High-quality sandwiched black phosphorus heterostructure and its quantum oscillations[J]. Nat. Commun., 2015, 6(1): 7315-1-6.
ALSAFFAR F, ALODAN S, ALRASHEED A, et al. Raman sensitive degradation and etching dynamics of exfoliated black phosphorus[J]. Sci. Rep., 2017, 7(1): 44540-1-9.
RYDER C R, WOOD J D, WELLS S A, et al. Covalent functionalization and passivation of exfoliated black phosphorus via aryl diazonium chemistry[J]. Nat. Chem., 2016, 8(6): 597-602.
ZHAO Y T, WANG H Y, HUANG H, et al. Surface Coordination of black phosphorus for robust air and water stability[J]. Angew. Chem. Int. Ed., 2016, 55(16): 5003-5007.
HAN C, HU Z H, GOMES L C, et al. Surface functionalization of black phosphorus via potassium toward high-performance complementary devices[J]. Nano lett., 2017, 17(7): 4122-4129.
GUO Z, CHEN S, WANG Z, et al. Metal-ion-modified black phosphorus with enhanced stability and transistor performance[J]. Adv. Mater., 2017, 29(42): 1703811-1-8.
朱宝华, 曹秀华, 陈艳, 等. 黑磷烯的制备及其非线性光学性质研究进展[J]. 中国材料进展, 2019, 38(12): 1193-1198.
ZHU B H, CAO X H, CHEN Y, et al. Research progress in preparation and nonlinear optical properties of black phosphene[J]. Mater. China, 2019, 38(12): 1193-1198. (in Chinese)
ZAHN D, HILDEBRANDT P N, VASILEIADIS T, et al. Anisotropic nonequilibrium lattice dynamics of black phosphorus[J]. Nano Lett., 2020, 20(5): 3728-3733.
QIAO J S, KONG X H, HU Z X, et al. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus[J]. Nat. Commun., 2014, 5(1): 4475-1-7.
XU Y J, SHI Z, SHI X Y, et al. Recent progress in black phosphorus and black-phosphorus-analogue materials:properties, synthesis and applications[J]. Nanoscale, 2019, 11(31): 14491-14527.
YI Y, SUN Z B, LI J, et al. Optical and optoelectronic properties of black phosphorus and recent photonic and optoelectronic Applications[J]. Small Methods, 2019, 3(10): 1900165-1-19.
ZHANG L, SHAO L Y, GU G Q, et al. Type-switchable inverter and amplifier based on high-performance ambipolar black-phosphorus transistors[J]. Adv. Electron. Mater., 2019, 5(6): 1900133.
YANG W T, YE L, YAO F F, et al. Black phosphorus nanoflakes as morphology modifier for efficient fullerene-free organic solar cells with high fill-factor and better morphological stability[J]. Nano Res., 2019, 12(4): 777-783.
BATMUNKH M, BAT-ERDENE M, SHAPTER J G. Black phosphorus:synthesis and application for solar cells[J]. Adv. Energy Mater., 2018, 8(5): 1701832-1-7.
BATMUNKH M, VIMALANATHAN K, WU C C, et al. Efficient production of phosphorene nanosheets via shear stress mediated exfoliation for low-temperature perovskite solar cells[J]. Small Methods, 2019, 3(5): 1800521.
YOU P, TANG G Q, YAN F. Two-dimensional materials in perovskite solar cells[J]. Mater. Today Energy, 2019, 11: 128-158.
ZHANG M, YE M D, WANG W L, et al. Synergistic cascade carrier extraction via dual interfacial positioning of ambipolar black phosphorene for high-efficiency perovskite solar cells[J]. Adv. Mater., 2020, 32(28): 2000999-1-9.
MUDULI S K, VARRLA E, KULKARNI S A, et al. 2D black phosphorous nanosheets as a hole transporting material in perovskite solar cells[J]. J. Power Sources, 2017, 371: 156-161.
LI B, ZHANG Y N, FU L, et al. Two-dimensional black phosphorous induced exciton dissociation efficiency enhancement for high-performance all-inorganic CsPbI3 perovskite photovoltaics[J]. J. Mater. Chem. A, 2019, 7(39): 22539-22549.
DONG W, XIONG S B, YANG J M, et al. Black phosphorus doped poly(triarylamine) as hole transport layer for highly efficient perovskite solar cells[J]. Org. Electron., 2021, 89: 106052-1-7.
WANG Y, ZHANG H J, ZHANG T Y, et al. Photostability of MAPbI3 perovskite solar cells by incorporating black phosphorus[J]. Sol. RRL, 2019, 3(9): 1900197.
李亮, 皮乐晶, 李会巧, 等. 二维半导体光电探测器:发展、机遇和挑战[J]. 科学通报, 2017, 62(27): 3134-3153.
LI L, PI L J, LI H Q, et al. Photodetectors based on two-dimensional semiconductors∶progress, opportunity and challenge[J]. Chin. Sci. Bull., 2017, 62(27): 3134-3153. (in Chinese)
张恒康, 冀婷, 李国辉, 等. 二维材料光电探测器的研究进展[J]. 半导体技术, 2020, 45(1): 43-51.
ZHANG H K, JI T, LI G H, et al. Research progress of photodetectors based on two-dimensional material[J]. Semicond. Technol., 2020, 45(1): 43-51. (in Chinese)
GUO Q S, POSPISCHIL A, BHUIYAN M, et al. Black phosphorus mid-infrared photodetectors with high gain[J]. Nano Lett., 2016, 16(7): 4648-4655.
WU J, KOON G K W, XIANG D, et al. Colossal ultraviolet photoresponsivity of few-layer black phosphorus[J]. ACS Nano, 2015, 9(8): 8070-8077.
WANG J L, FANG H H, WANG X D, et al. Recent progress on localized field enhanced two-dimensional material photodetectors from ultraviolet-visible to infrared[J]. Small, 2017, 13(35): 1700894-1-17.
WU F, LI Q, WANG P, et al. High efficiency and fast van der Waals hetero-photodiodes with a unilateral depletion region[J]. Nat. Commun., 2019, 10(1): 4663-1-8.
LEE C H, LEE G H, VAN DER ZANDE A M, et al. Atomically thin p-n junctions with van der Waals heterointerfaces[J]. Nat. Nanotechnol., 2014, 9(9): 676-681.
WU J, KOON G K W, XIANG D, et al. Colossal ultraviolet photoresponsivity of few-layer black phosphorus[J]. ACS Nano, 2015, 9(8): 8070-8077.
FANG H, BATTAGLIA C, CARRARO C, et al. Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides[J]. Proc. Natl. Acad. Sci. USA, 2014, 111(17): 6198-6202.
HE T, LI C, ZHANG X D, et al. Metalorganic chemical vapor deposition heteroepitaxial β-Ga2O3 and black phosphorus Pn heterojunction for solar-blind ultraviolet and infrared dual-band photodetector[J]. Phys. Status Solidi A-Appl. Mater. Sci., 2020, 217(2): 1900861-1-6.
CAO S W, XING Y H, HAN J, et al. Ultrahigh-photoresponsive UV photodetector based on a BP/ReS2 heterostructure p-n diode[J]. Nanoscale, 2018, 10(35): 16805-16811.
YIN Y L, CAO R, GUO J S, et al. High-speed and high-responsivity hybrid silicon/black-phosphorus waveguide photodetectors at 2 μm[J]. Laser Photon. Rev., 2019, 13(6): 1900032-1-8.
YOUNGBLOOD N, CHEN C, KOESTER S J, et al. Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current[J]. Nat. Photon., 2015, 9(4): 247-252.
CHEN X L, LU X B, DENG B C, et al. Widely tunable black phosphorus mid-infrared photodetector[J]. Nat. Commun., 2017, 8(1): 1672-1-7.
KOU L Z, CHEN C F, SMITH S C. Phosphorene:fabrication, properties, and applications[J]. J. Phys. Chem. Lett., 2015, 6(14): 2794-2805.
GAO T T, LI X F, XIONG X, et al. Optimized transport properties in lithium doped black phosphorus transistors[J]. IEEE Electr. Device Lett., 2018, 39(5): 769-772.
GAO A Y, ZHANG Z Y, LI L F, et al. Robust impact-ionization field-effect transistor based on nanoscale vertical graphene/black phosphorus/indium selenide heterostructures[J]. ACS Nano, 2020, 14(1): 434-441.
JING X, ILLARIONOV Y, YALON E, et al. Engineering field effect transistors with 2D semiconducting channels:status and prospects[J]. Adv. Funct. Mater., 2020, 30(18): 1901971-1-21.
NA J H, KIM Y, SMET J H, et al. Gate-tunable tunneling transistor based on a thin black phosphorus-SnSe2 heterostructure[J]. ACS Appl. Mater. Interfaces, 2019, 11(23): 20973-20978.
JEON P J, LEE Y T, LIM J Y, et al. Black phosphorus-zinc oxide nanomaterial heterojunction for p-n diode and junction field-effect transistor[J]. Nano Lett., 2016, 16(2): 1293-1298.
XU J, JIA J Y, LAI S, et al. Tunneling field effect transistor integrated with black phosphorus-MoS2 junction and ion gel dielectric[J]. Appl. Phys. Lett., 2017, 110(3): 033103-1-4.
BI J H, ZOU X M, LV Y W, et al. InGaZnO tunnel and junction transistors based on vertically stacked black phosphorus/InGaZnO heterojunctions[J]. Adv. Electron. Mater., 2020, 6(8): 2000291-1-8.
YANG B C, WAN B S, ZHOU Q H, et al. Te-doped black phosphorus field-effect transistors[J]. Adv. Mater., 2016, 28(42): 9408-9415.
LV W M, YANG B C, WANG B C, et al. Sulfur-doped black phosphorus field-effect transistors with enhanced stability[J]. ACS Appl. Mater. Interfaces, 2018, 10(11): 9663-9668.
TIAN B, TIAN B N, SMITH B, et al. Facile bottom-up synthesis of partially oxidized black phosphorus nanosheets as metal-free photocatalyst for hydrogen evolution[J]. Proc. Natl. Acad. Sci. USA, 2018, 115(17): 4345-4350.
WANG Q Q, LI N, TANG J, et al. Wafer-scale highly oriented monolayer MoS2 with large domain sizes[J]. Nano lett., 2020, 20(10): 7193-7199.
0
浏览量
597
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构