浏览全部资源
扫码关注微信
中北大学 仪器与电子学院,山西 太原 030051
[ "刘金萍(1996-),女,山西运城人,硕士研究生,2019年于中北大学获得学士学位,主要从事石墨烯量子点制备的研究。E-mail: s1906033@163.com" ]
[ "刘丽双(1967-),女,山西太原人,博士,高级实验师,2012年于中北大学获得博士学位,主要从事MEMS传感器设计与制造的研究。E-mail: lls@nuc.edu.com" ]
纸质出版日期:2021-12,
收稿日期:2021-08-03,
修回日期:2021-08-23,
扫 描 看 全 文
刘金萍, 李欣, 王瑞荣, 等. 激光诱导聚二甲基硅氧烷制备石墨烯量子点[J]. 发光学报, 2021,42(12):1900-1905.
Jin-ping LIU, Xin LI, Rui-rong WANG, et al. Preparation of Graphene Quantum Dots by Laser-induced Polydimethylsiloxane[J]. Chinese Journal of Luminescence, 2021,42(12):1900-1905.
刘金萍, 李欣, 王瑞荣, 等. 激光诱导聚二甲基硅氧烷制备石墨烯量子点[J]. 发光学报, 2021,42(12):1900-1905. DOI: 10.37188/CJL.20210251.
Jin-ping LIU, Xin LI, Rui-rong WANG, et al. Preparation of Graphene Quantum Dots by Laser-induced Polydimethylsiloxane[J]. Chinese Journal of Luminescence, 2021,42(12):1900-1905. DOI: 10.37188/CJL.20210251.
采用简单、绿色、低成本的方法合成石墨烯量子点(GQDs)一直是研究者们不断追求和探究的热点。本文首先采用简单、低成本的激光诱导聚二甲基硅氧烷(PDMS)方法成功制备出有缺陷的少层石墨烯,然后再以所制备的石墨烯为碳源,采用一步水热法成功制备出了分散性良好、横向平均尺寸约为6.67 nm、发稳定蓝色荧光的GQDs溶液。分别采用透射电镜(TEM)、拉曼光谱、紫外吸收光谱和荧光光谱对GQDs的形貌和荧光特性进行了表征。以硫酸奎宁为标准参考物,计算所得GQDs的荧光量子产率约为6.3%。本研究提出的制备GQDs的方法具有简单、低成本、低污染的优势,为石墨烯量子点的制备提供了一种新途径、新参考,也为石墨烯量子点大规模商业化制备提供了潜力。
Using simple
green and low-cost methods to synthesize graphene quantum dots(GQDs) has always been a hot topic pursued and explored by researchers. In this paper
a simple and low-cost laser-induced polydimethylsiloxane(PDMS) method was used to successfully prepare the defective graphene with few layers. Then
using the prepared graphene as carbon source
the GQDs with good dispersion
transverse average size of about 6.67 nm and stable blue fluorescence GQDs solution were successfully prepared by one-step hydrothermal method. The morphology and blue fluorescence characteristics of GQDs were characterized by transmission electron microscopy(TEM)
Raman spectroscopy
UV absorption spectroscopy and fluorescence spectroscopy. Taking quinine sulfate as the standard reference
the calculated fluorescence quantum yield of GQDs is about 6.3%. The method of preparing GQDs proposed in this study has the advantages of simplicity
low cost and low pollution. It provides a new way and new reference for the preparation of GQDs
and also provides potential for the large-scale commercial preparation of GQDs.
激光诱导石墨烯石墨烯量子点水热法荧光特性
laser inducedgraphenegraphene quantum dotshydrothermal methodfluorescence properties
ZHANG A T, CHEN T, SONG S W, et al. Ultrafast generation of highly crystalline graphene quantum dots from graphite paper via laser writing[J]. J. Colloid. Interf. Sci., 2021, 594:460-465.
MAITI S, KUNDU S, ROY C N, et al. Synthesis of excitation independent highly luminescent graphene quantum dots through perchloric acid oxidation[J]. Langmuir, 2017, 33(51):14634-14642.
YAN Y B, GONG J, CHEN J, et al. Recent advances on graphene quantum dots:from chemistry and physics to applications[J]. Adv. Mater., 2019, 31(21):1808283-1-22.
LI K H, LIU W, NI Y, et al. Technical synthesis and biomedical applications of graphene quantum dots[J]. J. Mater. Chem. B, 2017, 5(25):4811-4826.
HAI X, FENG J, CHEN X W, et al. Tuning the optical properties of graphene quantum dots for biosensing and bioimaging[J]. J. Mater. Chem. B, 2018, 6(20):3219-3234.
ANANTHANARAYANAN A, WANG X W, ROUTH P, et al. Facile synthesis of graphene quantum dots from 3D graphene and their application for Fe3+ sensing[J]. Adv. Funct. Mater., 2014, 24(20):3021-3026.
LI M X, CHEN T, GOODING J J, et al. Review of carbon and graphene quantum dots for sensing[J]. ACS Sens., 2019, 4(7):1732-1748.
CHEN W F, LV G, HU W M, et al. Synthesis and applications of graphene quantum dots:a review[J]. Nanotechnol. Rev., 2018, 7(2):157-185.
HAQUE E, KIM J, MALGRAS V, et al. Recent advances in graphene quantum dots:synthesis,properties,and applications[J]. Small Methods, 2018, 2(10):1800050-1-14.
ZHAO C H, SONG X B, LIU Y, et al. Synthesis of graphene quantum dots and their applications in drug delivery[J]. J. Nanobiotechnol., 2020, 18(1):142-1-32.
王雅珍, 庆迎博, 孟爽, 等. 石墨烯制备及应用研究进展[J]. 化学世界, 2019, 60(7):385-394.
WANG Y Z, QING Y B, MENG S, et al. Progress in preparation and application of grapheme[J]. Chem. World, 2019, 60(7):385-394. (in Chinese)
LIN J, PENG Z W, LIU Y Y, et al. Laser-induced porous graphene films from commercial polymers[J]. Nat. Commun., 2014, 5(1):5714-1-8.
CHYAN Y, YE R Q, LI Y L, et al. Laser-induced graphene by multiple lasing:toward electronics on cloth,paper,and food[J]. ACS Nano, 2018, 12(3):2176-2183.
王宗源, 胡滨, 吴旭东. 激光诱导石墨烯技术研究进展[J]. 激光与光电子学进展, 2021, 58(1):0100003-1-17.
WANG Z Y, HU B, WU X D. Research progress of laser-induced graphene technology[J]. Laser Opt. Prog., 2021, 58(1):0100003-1-17. (in Chinese)
FERRARI A C, MEYER J C, SCARDACI V, et al. Raman spectrum of graphene and graphene layers[J]. Phys. Rev. Lett., 2006, 97(18):187401-1-4.
FERRARI A C. Raman spectroscopy of graphene and graphite:disorder,electron-phonon coupling,doping and nonadiabatic effects[J]. Solid State Commun., 2007, 143(1-2):47-57.
郝欢欢, 刘晶冰, 李坤威, 等. 拉曼光谱表征石墨烯结构的研究进展[J]. 材料工程, 2018, 46(5):1-10.
HAO H H, LIU J B, LI K W, et al. Research progress on characterization of graphene structure by Raman spectroscopy[J]. J. Mater. Eng., 2018, 46(5):1-10. (in Chinese)
DUY L X, PENG Z W, LI Y L, et al. Laser-induced graphene fibers[J]. Carbon, 2018, 126:472-479.
ABBAS A, TABISH T A, BULL S J, et al. High yield synthesis of graphene quantum dots from biomass waste as a highly selective probe for Fe3+ sensing[J]. Sci. Rep., 2020, 10(1):21262-1-16.
DAI Y Q, LONG H, WANG X T, et al. Versatile graphene quantum dots with tunable nitrogen doping[J]. Part. Part. Syst. Char., 2014, 31(5):597-604.
姬子晔, 张海明, 吴磊, 等. 溶剂对石墨烯量子点荧光性质的影响[J]. 发光学报, 2016, 37(9):1031-1036.
JI Z Y, ZHANG H M, WU L, et al. Effects of solvent on luminescent properties of GQDs[J]. Chin. J. Lumin., 2016, 37(9):1031-1036. (in Chinese)
0
浏览量
127
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构